DEPARTMENT OF THE AIR FORCE \
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

19950206 092

Wright-Patterson Air Force Bdse‘




UNCLASSIFIED

AFIT/EN/TR94-07

Air Force Institute of Technology

A Formal Extension to Object Oriented Analysis
Using Z

Thomas C. Hartrum Paul Bailor

October 7, 1994

(¢ o
Q’}'«,}
<
0;‘2&:‘ ™,
o,

T,

¥
Approved for public release; distribution unlimited




A Formal Extension to Object Oriented Analysis
Using Z |

Thomas C. Hartrum & Paul Bailor
Department of Electrical and Computer Engineering
School of Engineering
Air Force Institute of Technology

October 7, 1994

Aoqession For y:

NTIS GRAAL o
|
O

DTIC T4B
Unannouneeod
Justifioatio

By _
Distcibutien/, 5
Availability Codes

Aveil and/for
Pist Speaisal

/|




Abstract

This report describes extending an informal object oriented analysis model with formal constructs.
Formal methods have evolved over recent years to the point of being supported by specific languages,
both mathematical such as Z [1] |2] [3] [4] [5], and executable wide-spectrum languages such as Refine [6).
However, the application of such models is still difficult. This is partly due to the abstractness of such
specification and the lack of well defined methodologies for applying them to real problems.

One of the appeals of more informal methods is the ability to visualize a system through the use of
graphical representations. Also, methodologies for developing these informal models are better estab-
lished. In particular, the object oriented paradigm has become popular in recent years.

This report documents an integration of the two approaches. Our modeling language is an extension
of the informal object oriented model to include formal specification of its basic constructs. Our method-
ology builds on that already evolving for object oriented modeling. The result is a process that is easy
to understand and apply, while resulting in a formal specification.

ii




Contents

1

2

5

Introduction

Informal Object Oriented Analysis Model

2.1 The OOA Object Model . . . . ... ... ..
2.1.1 Objects . ... ... ...
2.1.2 Associations. . .. ...........
2.1.3 Aggregation and Object Management
2.1.4 Inheritance .. ... ..........
2.1.5 TFeatures Not Included . .. ... ...

2.2 The OOA DynamicModel . . . . .. .. ...
221 States . . ... ... . e
222 Events. . ... ... ...
2.2.3 Activities and Actions . . .. ... ..
2.2.4 Event Flow Diagram . . ... .....

2.3 The OOA Functional Model . . . . ... ...

2.4 System Level Considerations . . .......

The Syntax of 7

342 Schemas as tyPesS « v v v v v v e e e e e e e e e e e e e e e

31 ZSchemas. ... ... ...
3.1.1 StaticSchemas . ............
3.1.2 Dynamic Schemas . ..........

3.2 Declarationof Types . . . .. ... ... ...

33 Globals . ... ... ..

3.4 Schema Usage Syntax . ............
3.4.1 Schemalnclusion .. ..........
3.4.3 SchemaCalculus .. ..........

Z Extensions to the OOA Model

4.1 The Extended OOA Object Model . . .. ..
4.1.1 Extended Objects . ..........
4.1.2 Extended Associations . . . ... ...
4.1.3 Inheritance ...............
414 Aggregation...............

4.2 The Extended Dynamic Model . ... .. ..
421 States . . .. v v v e e
4.2.2 Events and Transitions. . . ... ...
4.2.3 Event Flow Diagram . . .. ... ...

4.3 The Extended Functional Model ... .. ..
431 Useof Z......... ... .c....
4.3.2 Functional Model Example ... ...

4.4 Analysis Methodology . ............

Rocket Example

5.1 SimulationClock . ... ............
5.1.1 The Object Model . .. ........
5.1.2 The Dynamic Model . . . . .. .. ..
5.1.3 The Functional Model . . . .. .. ..

5.2 Next Event Queue (NEQ) . . ... ......

5.3 Fuel TankModel . .. .. ... ... .....

iii

...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................

...........................

...........................
...........................
...........................
...........................
...........................
...........................

...........................

...........................
...........................
...........................
...........................
...........................
...........................
...........................
............................
...........................
...........................
...........................
...........................

...........................

...........................
...........................
...........................
...........................
...........................

...........................




5.3.1 The Object Model . . . . . . . . . . i it e e e e e e e e e e
5.3.2 TheDynamicModel . . . . . . . ... e e
5.3.3 The Functional Model . . . . . . . ... .. . . e
54 Jet Engine. . . . . . o e e e e e e e e e
5.4.1 TheObject Model . . . . . . . . . . it i e e i e e e e
5.4.2 The Dynamic Model . . . . . . .. . . e e
5.4.3 The Functional Model . . . . . . . . . . . e e e e
B Alrframe . . . . . . e e e e e e e e e e e e e e e e e e e e e e e e e
551 The Object Model . . . . . . . . . . e e e e e
5.5.2 The Dynamic Model . . . . . . . . . . . . . e e
5.5.3 The Functional Model . . . . . . . . .. . . e e
5.6 Rocket . . . . . e e e e e e e e e e e e e e e e e e
5.6.1 The Object Model . . . . . . . . . e e e e
5.6.2 The Dynamic Model . . . . . . . . . .. . . e e e
5.6.3 The Functional Model . . . . . . . . . .. . . . . e
B.7 SUMIMATY . . . . o i v e e i e e e e e e e e e e e e e e e e e e e e e e e

Summary

Math Review
Al Set Definition . . . . . . . . . . e e e e e e e e e e e e e e e
ALl Basic Sets . . . . o i i e e e e e e e e e e e
Al2 Standard Sets . . . . . . . L e e e e e e e e e e e e e e e
A.1.3 Explicit Enumeration . ... .. .. . i e e e e
Ald Powerset. . . . o i i i e e e e e e e e e e e e e e e
A15 Set Membership . . . . .. . . . . . . e e e
Al6 TypeDeclaration . . . . . . . . o v v ittt e e e e e e e e e e
ALT Set Types . . o o v v e e e e e e e e e e e e e e e
A2 Cartesian Product . . . . .o v it i e e e e e e e e e e e e
A3 Set Operators . . v v v v v v i e e e e e e e e e e e e e e e e e e e e e
A4 Set Comparison . . . . . . . . . L L e e e e e e e
A5 Predicates . . . . . . o o i e e e e e e e e e
A6 Quantification. . . . . . o L i L e e e e e e e e e e e
AT Set Comprehension .. . . . . . v v i e e e e e e e e
A8 Relations . . . . . . . i i i e e e e e
A9 Functions . . . . . . . i i i e e e e e e e e e e e e
- A9l Totaland Partial Functions . . . .. ... ... ... .. . . . ..
A.9.2 Total and Partial Injections . . . . . . . . . . i i it i it e e
A 9.3 Total and Partial Surjections . . . . . . . . . . . . it e
A.9.4 Total and Partial Bijections . . . . . .. . v i v it i e e e e e
A.9.5 Total and Partial Finite Functions . . . . .. .. ... ... ... . . ... ... ...
A L0 Sequences . . . i i i i i e e e e e e e e e e e e e e e e e e e e
ALl Tuple Comeepts « o v v v v i i i e e e e e e e e e e e e e e e e e e e e e

B Conference Paper Reprint

List of Figures

1 The Association owWms. . . . v v v v v v i e e e e e e e e e e e e e e e e e e e e e
2 The Association takes. . . . . . . i i i i i i e e e e e e e e e e e e e e e e e
3 State Transition Diagram for Person. . . . . . . . .. . .. .. ... . . . e ..

iv

46

49
49
49
49
49
49
49
50
50
50
51
51
52
52
53
54
57
57
57
58
58
58
60
61

62




Event Flow Diagram for Persom. . . . . . .. .o vt v it 21

Object Model for Grading System. . . . .. .. ... i 22
Top Level DFD (Context Diagram). . . ... .o v ii it 23
Top Level DFD Decomposition. . . . . . . o v v i v it 23
Decomposition of Calec Stats. . . . . . . i e 24
Rocket Object Model. . . . . . . . o i i i e e 26
Fuel Tank State Transition Diagram. . . . . .. . . . .. o000 e e e 28
Fuel Tank Event Flow Diagram. . . . . . .« i i i it ittt i e it e e e e o 28
Fuel Tank Level 0 DFD. . . . . . . o o o i e e s e s e e e s e 31
Fuel Tank DFD for Fill Tank. . . . . . . . . o o i ot e e e e e et e a s 32
Fuel Tank DFD for Filll And Use. . . . . . . o o v i i et e e e e it e e e e e e e e s 33
Fuel Tank DFD for Use Fuel. . . . . . . . o i i i i i e it i e e e e 34
Fuel Tank DFD for Get Fuel Tank Weight. . . .. ... ... ... . .. ., 35
Jet Engine State Transition Diagram. . .. ... ... ... ... .. 36
Jet Engine Event Flow Diagram. . . . . .. .. .. oo 36
Jet Engine DFD for Calculate Thrust. . . . . ... ... . oo, 37
Airframe State Transition Diagram. . .. ... ... . it 39
Airframe Event Flow Diagram. . . . . . . . . 0o v it i e it 39
Airframe Level 0 DFD. . . . . . o i it e e e e e e e s 41
Airframe DFD for Perform Powered Flight. . . .. ... ... .. ... ... ... ... 42
Airframe Azimuth and Blevation. . . . . . . . . . o v i i e e 43
Airframe DFD for Perform Inertial Flight. . . . . .. ... ... .. o oo 44
Rocket State Transition Diagram.. . . . .« v v v v v it it it e e e 47
Rocket Event Flow Diagram. . . ... .. .. ittt ittt o 48

List of Tables

O 00 ~J O O o> W N

Multiplicity Representation . . . . . . v v v v v it i e e e e e 14
State Transition Table. . . . . v v v i i v i i e e e s e e e e e e e e e e e e e e 21
Fuel Tank State Transition Table. . . . . . o ¢ v v i i i i i it e e e e e et s a e e e s 29
Jet Engine State Transition Table. . . .. ... .. ... i i 36
Airframe State Transition Table. . . . . . .« v o v i v i it e e e e e e 38
Available state combinationsof components . . . . . ... .. o o o oo e 46
Available states of the Rocket . . . . v v v v v v i i i s e e e e e e e e e e 47
Rocket State Transition Table. . . . . . . v v i i i i it it e e e e e e e e s 47
Typesof Functions . . . . v v v v v it i e e e e e e e e 59




1 Introduction

The development of formal specifications for complex software systems offers the potential for making soft-
ware engineering as mathematically precise as other engineering disciplines are required to be. It also provides
an environment in which proof obligations on the specification can be conducted.

Formal specifications more clearly show the benefits of reuse at higher levels of abstraction. Formal
specifications tend to be much more loosely coupled than the specifications produced by informal methods.
They serve to specify classes of possible behaviors as opposed to very specific behavior which leads to very
specific solutions, which means they can be more readily reused. Additionally, their mathematical basis
lends them to be more easily combined by mathematical means in order to compose higher level behaviors.
This capability is especially important if we are ever to realize the benefits of domain analysis and domain
modeling. The formality of the specification languages also offers potential for greatly increased automated
capabilities over current generation CASE tools. In general, this is true from both an analysis of properties
perspective and a generation/synthesis of lower level code perspective.

Formal methods have evolved over recent years to the point of being supported by specific languages. At
one end of the spectrum there exist mathematically-based, non-executable languages such as Z [1] [2] [3] [4].
At the other end of the spectrum there exist mathematically-based, wide-spectrum languages such as
Refine™™ [6] which are also executable. However, learning to use formal methods can often be difficult.
Part of the problem is the abstractness of the formal-based languages, a problem that can be overcome in
the long run by providing software engineers with a better background in applied discrete mathematics. A
more substantial problem to overcome is the lack of well defined methodologies for applying formal methods
to real problems. While progress is.certainly being made in this area, much still needs to be accomplished.

This paper describes an approach that integrates well-established informal methods with formal methods.
In particular, the object-oriented system modeling approach based on the book by Rumbaugh, et.al. [7] is
extended by using the Z formal specification language to produce a formal-based, object-oriented specifica-
tion. Our modeling language is an extension of the object-oriented model to include formal specification of
its basic constructs, and our methodology builds on that already evolving for object-oriented modeling. The
result is a process that is easy to understand and apply, while resulting in a formal specification.

It should be noted that other researchers are also working on defining variations of Z to support the
object oriented paradigm [8]. Our approach does not extend the basic Z language, but uses it to augment
the Object Modeling Technique (OMT) as presented by Rumbaugh, et.al. [7]. As described in this report,
our emphasis is on the requirements analysis phase of the software development life cycle. However, the
form of our model is to some extent driven by our ongoing research in transformation systems to generate
executable code from these formalized specifications.

Another aspect of formal languages is the choice of executable versus non-executable specification lan-
guages. Both types have their merits. We chose the non-executable language Z because it forces modelers to
think more abstractly by removing the all too familiar programming level terms from their use. When using
executable, wide spectrum languages like that provided with the Software Refinery environment [6], one can
still rely on these lower-level concepts. However, one should not get the impression that Z is completely a
“pencil and paper” language. Some tools do exist for syntax checking, type checking, and pretty-printing
the Z specifications. While more sophisticated tools for Z are under development, the only other tool we
would like to have is a general-purpose theorem prover.

The approach described in this report has been taught in an introductory course in Software Engineering
at the Air Force Institute of Technology. Overall, this course has been very successful at simultaneously
introducing students to formal methods and object-oriented modeling. Introducing the mathematics and Z
formalism at the beginning of the course and integrating the formalism along with the informal model adds
to the sense of purpose of the formalism. Combined with our advanced course in formal-based methods, this
approach produces a very enlightened set of software engineers.




2 Informal Object Oriented Analysis Model

The basic informal object oriented analysis (OOA) model for this work is based on that of Rumbaugh,
et. al[7]. This was chosen for several reasons. Along with that of Coad and Yourdon [9] it is one of the
most comprehensive object oriented analysis models published. It is well recognized in the object oriented
literature. In addition, it was already in use as a text for our object oriented modeling course.

Rumbaugh’s model consists of three parts: the object model, which captures the structural properties of
objects and their relationships to each other, as well as a set of operations for each object; the dynamic model,
which captures the control aspects of the object which change over time; and the functional model, which
captures the transformation of data values within a system of objects. These three models are represented by
variations of the traditional graphical models of entity-relationship (E-R) diagrams, state transition diagrams
(STDs), and data flow diagrams (DFDs) respectively. Each of these models is augmented by a data dictionary
describing the models in more detail using natural language or any other desired specification language.

The models as introduced by Rumbaugh can be used to support all phases of the software life cycle
from requirements analysis through implementation. This section of the paper describes the subset of the
Rumbaugh model used as the basis for our formal extensions.

2.1 The OOA Object Model

The object model captures the static structural properties of objects, and their relationships to each other.
Important artifacts include objects (along with their attributes) and associations, where special categories
of the latter include aggregation and inheritance.

2.1.1 Objects

The object model consists of a set of related objects. Each is defined by a set of aitributes, the values
of which define the state of the object. We do not explicitly differentiate between those attributes which
remain constant over time (e.g. a person’s birth date) and those that can change (e.g. a person’s weight).
Objects are defined based on the problem space, not the solution space, so that their attributes should reflect
actual attributes of the object. Referential attributes (those that refer to another object, such as a person’s
spouse’s name) should not be included, but in the OOA model should be captured as a relationship between
two persons. While such treatment may not be efficient, we prefer to defer efficiency issues to the design
or implementation phase. However, at times such an approach seems extreme, as in a person’s birth date
being a relationship to a “day” object. Thus the analyst has some latitude of decision, based on the level
of abstraction and expected purpose for the model. On the other hand, we stress model reuse, even in the
analysis phase, which is better supported by keeping object models as “pure” as possible.

The object models at this stage represent object classes. Each object definition is a template that
represents any actual objects of that class. Thus the definition of a “person” object defines the attributes
held by any instance of the object such as “Mary Jones” or “Tom Smith.” In this paper the terms class, ‘
object and object class are used interchangeably, and the term object instance (or just instance) will be used
when dealing with instances. Although for some objects a single instance exists in the system, handling this
difference is left as a design or implementation issue. Objects are represented on the object (E-R) diagram
by a rectangle containing the object class’s name.

We support Rumbaugh’s concept of object instances being distinguishable without the need for a unique
set of distinguishing attributes (frequently referred to as a key in database terminology). We refer to an
implied (not explicitly represented) handle attribute as a means of distinguishing between instances when such
a concept helps explain the lack of a “key field.” Another implied attribute consistent with the Rumbaugh
model is that of the object’s class. That is, an object’s class is always assumed to be known by the object,
even though the class is not explicitly represented by an attribute.




2.1.2 Associations

Relationships between objects are modeled as associations. An association, similar to an object class,
represents a group of possible relationships between object instances. An actual instance of an association,
relating two specific object instances, is termed a link by Rumbaugh.

Most associations are binary (i. e. they relate two objects) and appear on the object diagram as a
line between the two object rectangles. Associations are named, with the name written next to the line.
Associations can have attributes themselves (as in the case of a “date” attribute for a “marriage” association
between two “person” objects). Special notation is provided to indicate such associations on the object
diagram. Ternary associations (relating three objects) are also defined and represented by a diamond with
lines to the three object rectangles. Higher order associations are possible, but encountered infrequently in
real applications.

Multiplicity defines how many instances of one class are associated with a single instance of the other
class. The multiplicity of an association can be 1:1, 1:n, or m:n (many to many). In addition, membership of
an object instance in an association may be required or optional. Such factors are represented on the object
diagram by a system of filled and hollow circles, numbers, and “+” signs at each end of the association line.

2.1.3 Aggregation and Object Management

One special type of association is called aggregation by Rumbaugh. This is sometimes referred to as the
“composed-of” or “part-of” association, and allows explicit modeling of one object that is composed of other
objects as parts. Recursive aggregation is allowed. A diamond is added to the end of the line connected
to the parent, or aggregate object, while the part, or component end of the line is terminated as in regular
associations. An aggregation can represent one or many instances of the component class making up the
aggregate. In our approach an aggregate is frequently used to model a group or set of objects, such as an
organization of students. ‘

When an object class is specified in the analysis phase, it is implied that any number of instances of that
class can exist, and instances can be created and deleted dynamically. In design and implementation, some
mechanism, explicit or implicit, is needed to keep track of and allow access to individual object instances.
This object management is normally not addressed in the analysis phase. Thus object instances can belong
to an aggregation set or simply exist in the “ether.”

2.1.4 Inheritance

Inheritance is an important part of any true object oriented model. It allows subclasses to be defined which
have (inherit) all of the properties (attributes, associations, and operations) of their superclass (parent class).
This is a special association (often called the “is-a” association) represented on Rumbaugh’s object diagrams
by adding a triangle to the association line, with the apex pointing to the superclass. A subclass inherits all
of its parent class’s attributes and all associations. In addition, a subclass can add additional attributes or
associations and can restrict the set of allowable values for an attribute, but cannot eliminate an attribute
entirely.

2.1.5 Features Not Included

Some of Rumbaugh’s model features are not included in the informal part of our model. Default values
and data types of attributes are deferred to the formal extensions. Attributes are not explicitly shown on
the object diagram. Operations are not considered for our OOA model. Rather behavior is captured by
the dynamic and functional models. The Rumbaugh object model is an extremely rich model, providing
explicit features to model many special cases. Among such features not addressed in our approach are:
role names; ordering of relations (we can use sequences); qualification (these are captured in the formal
schemas); inheritance of operations is deferred to the design phase; propagation of operations in aggregation
isn’t considered; and partitioning issues (modules and sheets) aren’t addressed, but can be applied directly




as defined by Rumbaugh. Other aspects not addressed include candidate keys, derived objects and links,
homomorphisms, and explicit designation of abstract vs concrete classes.

2.2 The OOA Dynamic Model

The dynamic model captures those aspects of an object and its associations that change over time. The
basic model followed is a traditional state transition diagram. Although some authors (e. g. Mellor and
Schlaer [10]) define a dynamic model for every object, Rumbaugh restricts the dynamic model to those
objects “with interesting behavior.”

Artifacts of interest include states, events, activities and actions, and event flow diagrams.

2.2.1 States

In general, an object’s state space is defined by the allowable values of all of its attributes, and its actual
state at any point of time is defined by the current values of those attributes. The dynamic model represents
a partitioning of an object’s state space. In Rumbaugh’s model each of these partitions is what is referred
to as a state in an object’s dynamic model. Thus, for example, the single attribute “age” for a “person”
object might define a hundred or more states for a person. The dynamic model might include the states
“childhood,” “adolescence,” “adulthood,” and “old age.” Rumbaugh points out that the dynamic model
can capture temporary changes of an object’s type. Modeling “adult” and “old person” as subclasses of
“person” would be incorrect since an object can’t change its class. Thus “inherent differences among objects
are therefore properly modeled as different classes, while temporary differences are properly modeled as
different states of the same class.” [7]

A state then represents a partition of the object’s state space that represents unique behavior with respect
to the other states. Many objects turn out to be passive objects, in Rumbaugh’s terminology — those that
simply reply to requests for values of their attributes. For these no state diagram is required. A state is
entered based on some (usually external) event (see Section 2.2.2), and upon entering a state some activity
is (usually) performed (see Section 2.2.3).

States are named, and represented on a state transition diagram by ovals. States can be hierarchically
decomposed into substates. The resulting nested state diagrams help overcome the problem of state explosion
often cited as a disadvantage of state modeling. Directed arcs between the state ovals represent allowable
transitions between states, caused by events. Thus a state can be viewed as an object’s response to an event.
A state is defined to have duration over time. An object can only be in one state at a time. However, such a
state can be a combination of states in “concurrent” dynamic models. For example, a person could be in the
“adulthood” state of the dynamic model described above, and also in the “middle class” state of a dynamic
model based on a person’s “salary” attribute.

2.2.2 Events

Events cause the transition between states for an object, and are written as labels on the corresponding state
diagram transition arcs. In Rumbaugh’s model such events are defined to originate external to the object,
and are in fact generated, or “sent” by another object. (An object can cause a transition between its own
states; this is represented by an unlabeled arc between the two states). An event occurs instantly, at a point
in time. An event can carry attributes or parameters. As with objects and associations, events can represent
a class or a specific instance, although no separate terminology is used here.

Since an object can only be in one state at a time, the events causing transition out of a state must
be mutually exclusive (otherwise the object would transition to two or more states when such an event
occurred). The same event can appear on more than one transition arc, making the state entered dependent
on both the event itself and on the state in which the event occurred. Although self-looping transitions are
allowed, the assumption is that if no arc labeled for event “E” is shown exiting a state, then the object would
not respond to event “E” when in that state.




Transitions (either event-driven or unlabeled) can be constrained by Boolean guard conditions. Thus two
arcs out of the “running” state of a motor might be labeled with the same event, but with one conditioned
by “safety switch ON” and the other by “safety switch OFF.” The guard condition must evaluate to TRUE
when the event occurs for the transition to take place.

2.2.3 Activities and Actions

Behavior associated with a state is defined as an activity. This is similar to the Moore version of state models,
where an output is associated with a state. An object begins “execution” of an activity upon entering a
state. This can represent a continuous action, such as turning on an alarm, that continues until another
event causes the object to leave the state, or a sequence of events that are performed. In the latter case
the object may automatically leave the state when the activity is complete, or may wait at the end for an
external event. If an event occurs before such a sequence is completed, the activity is interrupted.

An action is associated with a transition (and hence with an event). This is similar to the Mealy version
of state models, where an output is associated with a transition. Since events and transitions are considered
instantaneous, an action is viewed as taking no time, such as triggering an alarm or sending an event to
another object.

Although Mealy and Moore machines are alternate modeling approaches, both activities and actions are
allowed in the same Rumbaugh dynamic model, providing a rich set of modeling possibilities. Activities
can be defined in a variety of ways including natural language text, pseudo code, or a predicate logic
statement of the conditions prevailing while in the state, and would typically be detailed, along with other
characterizations of the state, in the data dictionary. Actions are named or described on the state transition
diagram itself.

2.2.4 Event Flow Diagram

An event flow diagram is a useful way of documenting which objects must communicate with each other.
Objects are represented by rectangles, with a directed arc connecting an object that sends events to the
object which receives those events. The arc is labeled with a list of the events that can be sent.

2.3 The OOA Functional Model

The functional model consists of traditional data flow diagrams (DFDs) used for the classical purpose of
diagramming the flow of data between processes. The functional model complements the dynamic model in
specifying the behavior of the system.

The DFDs consist of circles (“bubbles”) representing processes or calculations to be done, connected by
directed arcs representing data flows between the processes. The data is used in or produced by calculations
in the processes. In addition date stores are defined for the storage of information, and are represented on
th= diagram by a pair of horizontal parallel lines. Actors represent external sources and sinks of the data
flows, and are represented by squares. The processes can be functionally decomposed into lower level DFDs.
The actual calculation done by each process is specified in the data dictionary as a process description. This
can take many forms, such as pseudo code or pre- and post-conditions. Both Rumbaugh {7] and Yourdon [11]
state that such process descriptions should only be developed for the lowest level, or leaf processes. We follow
that convention. The DFDs are meant to capture the functional specification of the system’s behavior in
the sense of what calculations are to be performed, along with the sources and destinations of the input and
output data of each calculation. The control aspect is captured by the dynamic model in the sense of when
calculations are to be performed (i.e. which state’s behavior is appropriate).

Although the use of the functional model during the analysis model development is somewhat unclear in
Rumbaugh, we find the best approach is to develop a DFD for each active object, that is, each object class
for which a dynamic model was developed. Passive objects only respond to queries to read or write attribute
values, and have no dynamic model. However, if a passive object has a derived attribute, particularly one




with complex calculations or one that depends on values from other objects, then a DFD is also developed
for that object.

In the DFD for a given object, any access (get or put) to that object’s attribute values is represented by
a data store with that object’s name. Any passive objects which act as sources or sinks of data flows on the
DFD are also represented as data stores. Process bubbles that simply define reading or writing a data store
are not explicitly shown.

Exchange of data with other active objects is handled in two ways. If such data is a parameter of an
event (either from the other object or to the other object), the object is shown as an actor. The same actor
may appear several times to simplify the drawing. However, if the data flow represents a get or put operation
of the other object’s attribute values, then the other object is represented as a data store. Thus the same
external object may appear both as an actor and as a data store on the same DFD.

Finally, if data is to be stored or retrieved from an association (including determining membership), then
the association is shown as a data store. Note that such a data store should not appear on a DFD unless
the object class is a member of that association.

At the object level, there will typically be one process bubble per state in the dynamic model, or one
for each activity within a state, as well as one for each action (either in a state or on a transition) that is
more than just sending an event to another object. However, the arcs connecting the bubbles on a DFD
represent the flow of data, along with its sources and destinations, while the arcs connecting the states in
the dynamic model represent control flow between these processes. A complex state activity (process) can
then be further decomposed in the functional model using the DFDs.

2.4 System Level Considerations

We view the system being specified as an object itself, composed of all the other objects. Thus the “system
object” is associated with all other objects using aggregation. Since aggregation is itself hierarchical, only
the top level aggregate of any complex object needs be connected to the system object with an explicit
aggregation line. Since this is an analysis model, it is important to include only problem space objects in
the system model.

3 The Syntax of Z

This section discusses the essential aspects of the Z syntax. The reader is referred elsewhere for more
detail [1] [2].

3.1 Z Schemas

In Z, most specifications are in the form of schemas. A schema is a boxed-in definition consisting of a
schema name, a signature, and a predicate. Static schemas are used to define the state space of a system,
while dynamic schemas are used to specify operations on the state space.

3.1.1 Static Schemas

The signature portion of a static schema declares the system’s state variables, each defined over a type
(discussed in Section 3.2 below). The predicate portion defines invariants or conditions that hold over the
schema’s variables at all times. For example, a person might be described as follows.

_People
name : seqCHAR
age : N
sex: {M,F}

age >0




Schema inclusion consists of including the name of one schema in the signature of another, as follows.

— Employee
People
employee_number : seqCHAR
salary : R

salary > 0.0

All of the variable declarations and predicates of the included schema become part of the new schema.
(This is explained in more detail in Section 3.4.1). It should be noted that a schema can be defined with
no explicit predicate. The implicit predicate in such cases is TRUE (when conjuncted with an included
predicate).

3.1.2 Dynamic Schemas

A dynamic schema is used to specify an operation on a system. The signature portion includes a copy of
the system’s state variables before the operation and a copy (decorated with a“ ') after the operation. In
addition, new variables can be declared, including inputs (decorated with a “?”) and outputs (decorated with
a “”). The predicate portion defines preconditions (predicates involving “before” variables) and postcondi-
tions (predicates involving “after” variables). For example, adding a raise to an employee’s salary might be
specified as follows.

__SalaryRaise
Employee
Employee’
raise? : My
new_salary! : N

salary’ = salary + raise?
new_salary! = salary’

A shorthand notation uses ASchemaName as follows.

__SalaryRaise
A Employee
raise? : Ny -
new_salary! : M

salary’ = salary + raise?
new_salary! = salary’

3.2 Declaration of Types

In a schema signature, variables are declared over sets or basic types. These types can be defined several
ways. There are some standard accepted sets, such as N/, V1, R, Z. Also, sets can be defined by declaring
their name in square brackets as follows before using them in schema declarations.

[TIME]
[DATE, MONEY]

These represent sets whose elements are not modeled in any further detail.




Sets can be declared globally using axiomatic definitions, as with YEAR in Section 3.3 below.
Enumerated sets can be handled two ways. They can be declared before use as a data type definition.

DOOR_STATE ::= open | closed
LOCK_STATE := locked | unlocked

__Access
door : DOOR_STATE
lock : LOCK_STATE

lock = locked = door = closed

Alternately, enumerated sets can be shown explicitly in the schema.

_Access
door : {open, closed}
lock : {locked, unlocked}

lock = locked = door = closed

3.3 GGlobals

Definitions and predicates can be made globally by the use of aziomatic descriptions.

| mazcount : Ny

limit : Nq
Iimit < 1000

YFEAR :seq DIGITS
#YEAR =4

3.4 Schema Usage Syntax
3.4.1 Schema Inclusion

As discussed in the previous section, schema inclusion involves using one schema name in the signature of
another. The result is to union the signatures and conjunct the predicates. Consider the People schema and
Employee schema defined in Section 3.1.1.

__People
name : seqCHAR
age : N

sex: {M,F}

age >0




— Employee
People
employee_number : seqCHAR
salary : N

salary > 0.0

Forming the union of the signatures and the conjunction of the predicates yields the equivalent definition
as follows.

— Employee

name : seqCHAR

age : N

sez : {M,F}

employee_number : seqCHAR
salary : N

age > 0
salary > 0.0

3.4.2 Schemas as types

A previously defined schema can be used as a type in a new schema. Although this technique is mentioned
by several authors, the syntax is not well defined and few examples can be found. However, this usage of
schemas is critical to our application to object oriented systems. Spivey [3] in Section 3.3 states “When a
schema name has been defined, ...it can be used in a schema reference to refer to a schema. A schema
reference can be used as a declaration, ...” On page 65 he states “A schema reference may be used as an
expression: its value is the set of bindings in which the values of the components obey the property of the
schema. The schema reference S used as an expression is equivalent to the set comprehension {S ¢ #5}.” On
page 72 he states “A schema reference S’ may be used as a predicate: it is true in exactly those situations
which, when restricted to the signature of the schema, satisfy its property. It is effectively equivalent to the
predicate 85’ € S, where S as an expression means {S ¢ 65}.” Finally on page 145 he states “The syntax of
set expressions is ambiguous: if S is a schema, the expression {S} may be either a (singleton) set display or
a set comprehension, equivalent to {S @ 8.5}. The expression should be interpreted as a set comprehension;
the set display can be written {(S5)}.”

Hayes [4], on page 17 in his glossary says “When a schema name S is used as a type it stands for the set
of all objects described by the schema, {S}, e.g., w:S declares a variable w with components x (a natural
number) and y (a sequence of natural numbers) such that z < #y.” where S is defined by

_5
z: N
y:seqN

z < #y

On page 17 he defines tuple S as “The tuple formed from a schema’s variables: e.g., tuple S is (x,y).
Where there is no risk of ambiguity, the word ‘tuple’ can be omitted, so that just ‘S’ is written for ‘(z,y)”
(emphasis added).

Ince [2] on page 267 states “the schema ...when enclosed in curly brackets {S} is equivalent to the
comprehensive set specification {z : N; y : seq N | # < #y} which is the set of ...” (example schema S
substituted for his example), but does not show such a use inside another schema’s signature.




Finally, Sommerville [5] in Figure 9.12 shows the following schema.

DataDictionary
IiData,DictionaryEntry

ddict : NAME + {DataDictionaryEntry}

where NAME is a type definition, and DataDictionaryEntry is a schema. Function ddict maps a NAME
to a DataDictionaryEntry. Based on the definitions of Spivey and Hayes, it would seem the proper syntax
should be as follows.

DataDictionary
DataDictionaryEntry
ddict : NAME - DataDictionaryEntry

He also shows the following schema in Figure 9.21.

__NewDataDictionary
DataDictionaryEntry
ddict : seq{ DataDictionaryEntry}

Vi,j: domddict e (i < j) = s(i).ident <. namE s(j)ident

with the implication that DataDictionaryEntry must be included in order to refer to s.ident, a component
of DataDictionaryEntry. This is not illustrated in any of the other authors’ examples.

We interpret the syntax as follows. Consider the case for a (traditional) family consisting of two persons,
a husband and a wife, with several children, where only children under the age of eighteen are included. In
addition, a set of chores to be performed by family members are defined.

[JOBS]

— Family
husband : People

wife: People

children : PPeople
chores : JOBS < People

husband.age > 18
wife.age > 18
husband.sex = M
wife.sex = F
Vz : children e z.age < 18
dom chores = JOBS
ran chores = children U {husband} U {wife}

The syntax here represents that husband and wife is each a variable of type People, while children is a
set of People. The relation chores is a set of ordered pairs, each of which consists of a JOB and a People.
Since it is a relation, each job can be assigned to one or more persons and each person can be assigned more
than one job.

The first four predicates simply put constraints on attribute values of family members, and illustrate
the use of the “.” syntax for referring to components of a schema type (e.g. wife.age). Our convention is

10




that a schema doesn’t have to be included in order to access its variable types if it has been used in a type
declaration.

The fifth predicate specifies that all members of the children set must have an age of less than eighteen.
The sixth predicate indicates that every job must be assigned a person in the chores relation, while the last
predicate specifies that every member of the family must be assigned at least one job.

3.4.3 Schema Calculus

Schemas can be combined and manipulated in more sophisticated ways. The reader is referred to other
sources for more detail 3] [1] [2] {4].

4 7 Extensions to the OOA Model

The formal extensions discussed in this section are built on the object oriented analysis model of Rumbaugh,
et. al.[7]. All three parts of Rumbaugh’s model, the object model, the dynamic model, and the functional
model, are included. Static Z schemas are used to specify objects and associations in the object model as
well as to define states in the dynamic model. Dynamic Z schemas are used to specify processes in the
functional model. In addition, a state transition table, using formal syntax, is used to define transitions in
the dynamic model.

4.1 The Extended OOA Object Model

The object model captures the static structural propertieé of objects and their relationships to each other.
Both objects and associations are formalized, including the special association categories of inheritance and
aggregation.

4.1.1 Extended Objects

The object model is formalized by defining a Z static schema for each object class. The schema is named
the same as the object, where by convention we capitalize the first letter of the name. The signature portion
of the schema defines each attribute by its name (by convention spelled with a lower case letter) and a
set-theoretic type over which it is defined.

We continue Rumbaugh’s concept of object instances being distinguishable without requiring a unique
attribute by treating all attributes the same in the schema signature. The implicit handle attribute as well
as the object’s class are not included in the schema. (Other researchers have taken the approach of requiring
a unique instance identifier attribute and using this as the basis of defining a function relating it to the other
attributes [12]).

Another concept of Rumbaugh’s that we continue is that attributes represent pure, atomic values, and
no other objects. Thus the set-theoretic data types used in object schemas are predefined types. These are
normally expressed in all upper case, and represent predefined sets or sets defined globally as axioms. An
exception to this occurs when dealing with aggregation, discussed in Section 4.1.4.

The predicate portion of the schema contains Boolean predicates that represent invariants for the object;
that is, assertions that must be true at all times. This is similar to Rumbaugh’s notion of constraints, but
here consists of invariants on and between the object’s attributes. Predicates can also used to specify derived
attributes, that is, attributes that can be derived from other attributes of the object. Although these could
be omitted, the derived attributes turn out to be useful when “connecting” inputs to outputs in an aggregate
model (see Section 4.1.4).

11




Consider as an example the following informal model of a vehicle class.

J
i

Vehicle

vehicle type: vehicle_set
serial number: string
model type: string

model year: integer
weight in kg: integer
primary color: color_set
second color color_set
max speed in kph: integer

The corresponding Z schema would be:

[VEHICLES,CHAR,MODELS,COLORS,DIGITS]

YEAR :seq DIGITS
#YEAR =4

_Vehicle
veh_type : VEHICLES
serial_number : seqCHAR
model_type : MODELS
model_year : YEAR
weight_kg : N
primary—color : COLORS
second_color : COLORS
mazx_speed_kph : N

weight_kg > 0
maz..speed_kph > 0

As another example, consider the Z specification for a person object class, to be used in later examples.
Note the use of the globally defined TODAY to represent the current date and the derived attribute age.

[CHAR, DATE, DIGITS]
SEXTY PE = male | female

SSAN :seq DIGITS
#SSAN =9

TODAY : DATE
3d: DATE ¢ d =TODAY A TODAY is the current day.

yearinterval : DATE x DATE - Z

Vdy,d2 € DATE e yearinterval(d;, dz)returns the number of complete years from dy to ds.

12




__Person
lastname : seqCHAR
initial : CHAR
firstname : seqCHAR
birthdate : DATE
ssan : SSAN

sex: SEXTY PE

age : N1

age = yearinterval(birthdate, TOD AY)

4.1.2 Extended Associations

Relationships between objects are modeled as associations. Objects are represented on the object diagram
by a rectangle containing the object class’s name. Binary associations appear on the object diagram as a line
between the two related object rectangles, with the association name written next to the line. In general,
each binary association is documented as a Z static schema. Multiplicity of an association can be one to one
(1:1), one to many (1:n), or many to many (m:n), and membership of an object instance in an association
may be required or optional. Such factors are represented on the object diagram using Rumbaugh’s syntax
of filled and hollow circles, numbers, and “+” signs at each end of the association line. In our extended
model, these define the form of the association definition.

Each association is represented by a Z static schema. The schema name corresponds to the association
name with the first letter in upper case. The set theoretic types used in the association schema are the static
schemas defining the object types that are related. The signature includes a form of mathematical relation
(relation, function, injection, etc. as outlined below) using the name of the schema spelled with a leading
lower case letter.

For a general m:n association, the signature declaration takes the form of a relation. Consider an asso-
ciation owns relating a person instance to a vehicle instance, as shown in Figure 1.

1+ owns .
Person @ Vehicle

Figure 1: The Association owns.

Note by the symbology at the ends of the line that in this model a vehicle can be owned by more than
one person, and a person may own more than one vehicle (m:n). Furthermore note that each vehicle must
have at least one owner, while a person need not own any vehicles. The corresponding Z schema would look
as follows.

__Owns
owns : Person « Vehicle

ranowns = Vehicle

In this model owns is defined as a set of ordered pairs. The set-theoretic data types used in defining
the relation are themselves schemas, as outlined in Section 3.4. The predicate allows us to specify that all
possible vehicles must have an owner. The predicate “dom owns = Person” would be added if every person
was required to own a vehicle, and neither predicate would be included if membership of both sets in the

13




association were optional. The requirement for these predicates is unique to m:n relations, as the optionality
is captured by the specified form of the function in the remaining cases.

Consider the case where each vehicle must have a single registered owner. Then the association becomes
1:n and can be represented as follows.

OneOwns
l—one_owns : Vehicle — Person

Here the symbol — indicates a total function, which captures the invariant that every vehicle must have
an owner. The Z syntax includes functions to cover all other cases of multiplicity and membership. These
are summarized in Table 1,

Table 1: Multiplicity Representation

- | Domain Range Formal zed.sty | Alternate
Multiplicity | Membership | Membership | Specification Symbol | Symbol
m:n either either Relation w/ predicates “

n:l optional optional Partial Function +
n:l required optional Total Function —
n:l optional required Partial Surjection —
n:l required required Total Surjection —»
1:1 optional optional Partial Injection C >+
1:1 required optional Total Injection C >—
1:1 required required Bijection & >—»

Another option is where the association line is terminated with a number. For example, consider the
object diagram in Figure 2, where each student must take 2 or more sequences. Assuming that schemas have
been defined for Student and Sequence we can specify the association Takes as follows.

Student o takes 2| Sequence

Figure 2: The Association takes.

—Takes
takes : Student « Sequence

Vs:domtakes o #({s} < takes) > 2

Associations can have attributes themselves (as in the case of a “date” attribute for a “marriage” asso-
ciation between two “person” objects). We treat all such cases as associative objects and define a separate
schema. for the associative object.

For example, suppose in the earlier example of each vehicle being owned by a single person that such an
association is characterized by a “registration number” and “registration date.” These are attributes of the
association, not of the person or the vehicle alone. Using Z this would be expressed as follows.

14




Registered _Attr
reg_number : seqCHAR
reg.date : DATE

and

Registered
[_registered : (Vehicle —» Person) — Registered_Attr

Ternary associations (relating three objects) are handled in a similar fashion. Consider a ternary associ-
ation “drives” that represents a person driving a specific car in a particular race. Assuming that a schema
Race has been defined, we could specify the ternary association as follows.

Drives
l_dri'ues : P(Person x Vehicle x Race)

4.1.3 Inheritance

Inheritance is a special type of association and is treated differently. Since an instance of the subclass “is-a”
instance of the superclass, we first define the superclass schema, then include it in the subclass schema.
For example, consider a military officer as a specialization of a person. Using the Person schema already
defined, we could specify the following.

[RANKSET,BRANCHES,SPEC_CODES]

Of ficer
Person
rank : RANKSET

branch : BRANCHES
specialty : SPEC_CODES

Similarly
[MAJORS,DATE]

—_Student
Person
major : MAJORS
manor : MAJORS
entered : DATE
gpa: R

gpa 2 0
gpa < 4.0

Multiple inheritance can then be specified, as in the case of a military student.

[CODES]

MilitaryStudent
Student
Of ficer
ed_code : CODES

15




4.1.4 Aggregation

Since aggregation is just a special type of association, it could be represented as any general association.
However, we find it convenient to adopt a slightly different approach.

Collections The simplest aggregdte object is one composed of a set of objects of the same type. This
occurs frequently in specifying systems. For example, consider a roster of drivers, which could be specified
as follows.

Roster
l—'roster : PPerson

Similarly, a set of vehicles could be specified.

Fleet
fleet_name : seqCHAR
fleet : PVehicle

In this last example, a fleet consists of a fleet name and a set of vehicles.

Composition Now consider a transportation company that consists of a roster of drivers and several fleets
of vehicles.

TransportCo
[‘drivers : Roster i

tnwventory : PFleet

Or, in a somewhat simpler approach,

TransportCo
'7dri'vers : PPerson

inventory : PFleet

Note that in all cases the aggregate association is represented as variable or set declared over the appro-
priate schema.
As another example, suppose the following three schemas are defined.

— Engine
cylinders : Ni
displacement : N
horsepower : Ny

cylinders > 4

_Wheel
diameter : Ny
width : My

pressure : N

16




W heelSet
I—'wheels : PW heel

Then the vehicle specification could be defined as foliows.

—Vehicle
engine : Engine
all_wheels : WheelSet
veh_type : VEHICLES
serial_number : seq CHAR
model_type : MODELS
model_year : YEAR
weight_kg: N
primary.color : COLORS
second_color : COLORS
maz_speed_kph : N

weight_kg > 0
maz_.speed_kph > 0
veh_type =' auto’ = #all_wheels.wheels = 4
veh_type =' cycle’ = #all_wheels.wheels = 2

Associations Between Components Since an aggregate object represents an object in and of itself, we
find it useful to embed associations between its component objects in the schema definition of the aggregate.
Consider the transportation company defined earlier, which consisted of a roster of drivers and a set of
vehicle fleets.

TransportCo
drivers: Roster
inventory : PFleet

Suppose that each driver is assigned to a fleet. Fleet assignments are not permanent and can be changed
by the dispatcher, but a driver can only be assigned to one fleet at a time. Obviously a fleet can have many
drivers assigned, but under some circumstances a fleet might have no drivers assigned, and at times a driver
might not be assigned to any fleet. Since schedules are made out in advance, and a driver could be assigned
to the same fleet for different intervals, each assignment has a specified effective date. Since the Assignment
association only makes sense in the context of the transportation company, we prefer to define it as part of
the aggregate object schema definition. This allows the relationship (a function in this case) to be expressed
directly in terms of component sets as follows.

TransportCo
drivers: Roster

inventory : PFleet

assigned : (drivers.roster + inventory.fleet) - DATE

This is somewhat inconsistent with our approach of defining associations in separate static schemas. The
only disadvantage to this approach is that it limits the reuse of association specifications.

Pure Aggregates Rumbaugh is vague on whether an aggregate can exist as an instance with no compo-
nents. There may be an advantage in formalizing OOA to define (or require) the idea of a pure aggregate.

17




Such an aggregate would have no attributes of its own. (A variant would allow static attributes, such as
a vehicle serial number, which realistically is not associated with any one component). This is in line with
the SEI philosophy [13] [14] that all object hierarchies should be “fat,” that is have only a single level of
hierarchies, and that all lower level aggregates are model artifacts that are not themselves real.

The above example might then become as follows.

Vehicle
engine : Engine
all_wheels : WheelSet
body : Body

Note that primary.color and second_color are attributes of “Body.” Also weight_kg and max _speed_kph
can be derived from the aggregation of attributes of the components. Attributes veh_type, model type, and
model_year are class attributes of a subclass and could possibly be handled through specialization or by a
pseudo-model. Only serial number presents a problem of being an attribute of an instance of the aggregate
instance itself.

4.2 The Extended Dynamic Model

The dynamic model uses a traditional state transition diagram to capture those aspects of an object that
change over time. Our extended model includes states, events, activities and actions, and event flow diagrams.

4.2.1 States

An object’s state space is defined by (1) the allowable values of all of its attributes, (2) by its membership
(or lack of) in those associations in which it can participate, and (3) by the link attribute values of such
associations. A state in the dynamic model represents a partition of the object’s state space that represents
unique behavior with respect to the other states. Thus a “Person” could be in a “child” or “adult” state
based on its “age” attribute; it could be in the “employed” or “unemployed” state based on its membership
in the “WorksFor” association; and if employed could be in the “MiddleClass” or “Wealthy” state based on
the value of the link attribute “salary” of the “WorksFor” association. Note that a person can move between
“child” or “adult” independently of moving between “unemployed” or “unemployed,” demonstrating the
idea of concurrent state partitions for an object.

In our extended model each state is given a name, and a corresponding Z schema is defined. However, a
basic static schema is inappropriate, because predicates there define invariants for all members of the class
that hold for all times, while different instances of an object can be in different states. Thus for a state schema
we declare an object of the specified type in the signature portion of the schema and include any involved
associations. In the predicate portion, the partition of state variables that define this state is expressed as
a predicate over the state variables of the declared variable using tuple notation (object.attribute) and/or
membership of the input variable in the appropriate associations. These reflect invariants of that state.

Consider the Employee class defined in Section 3.1.1. There salary was modeled as an attribute of an
employee. A better approach might be to define the salary as a link attribute of association WorksFor,
where we define the WorksFor association between the Person class and the Company class (not previously
defined) as follows.

WorksFor_Attr
Iiposition_number :seqCHAR

salary: R

18




— WorksFor
employment : (Person -» Company) — WorksFor_Attr

Vz € ran employment o z.salary > 0.0

Then a series of states can be defined for a Person as follows,
__Child

p: Person

p.age < 18

— Adult
p: Person

p.age > 18
p.age < 65

__Senior
p: Person

p.age > 65

— Unemployed
p: Person
WorksFor

p ¢ dom dom employment

— Employed
p: Person
WorksFor

p € dom dom employment

__MiddleClass
Employed

V¢ : Company e (employment(p,c)).salary < 100,000.00

— Wealthy
Employed

V¢ : Company e (employment(p, c)).salary > 100,000.00

Note that “MiddleClass” and “Wealthy” are in fact substates of state “Employed.”

Upon entering a state some activity is (usually) performed. Either this activity must not modify the
object’s state variables (i.e. perform a true function with no side effects) or any such modifications must be
within the range of the current state partition in order for the object to remain in the same state. However,
it is possible for the object to modify its state variables or association membership such that it actually
changes state. This is discussed as an automatic transition in the next section.

The behavior of an object while in a state is described in a narrative manner in the dynamic model. It
is defined in more detail, using dynamic schemas, in the functional model.

19




4.2.2 Events and Transitions

Following the approach of Rumbaugh, a transition represents the change from one specific state to another.
Events external to the object cause the transition between states. An event is considered to occur instantly
relative to the duration of a state. An event can carry parameters which convey data to the object. An
event usually causes a transition, but the transition can be defined as conditional on some guard condition.
Finally, in Rumbaugh’s model, a transition can cause the execution of an action, often the sending of an
event to some other object. Thus a transition can be completely characterized by an initial state, an external
event (with optional parameters), an optional guard condition, a target state, and an optional action. We
find the most effective way of capturing this aspect of the specification formally is through the use of an
event transition table.

For example, consider the state transition diagram for a Person based on age and salary, shown in
Figure 3. The corresponding state transition table is shown in Table 2.

Birthday [age < 64]

Birthday [age = 17]

Birthday [age = 64]

Birthday [age <17}

Fired

Figure 3: State Transition Diagram for Person.

An automatic transition occurs when an object has finished its specified task in a state and transitions
to another state without waiting for an external event. This is shown on the state transition diagram as
an unlabeled transition arrow (although it may have a guard condition and/or an action), and appears in
the state transition table with no entry in the “Event” column. Note that this should be used to model an
internal transition between two states in which the object’s behavior differs, and not used to break up a
state’s activity into sequential steps.

4.2.3 Event Flow Diagram

An event flow diagram is a useful tool for documenting which objects must communicate with each other.
In Rumbaugh’s syntax objects are represented by rectangles, with a directed arc connecting an object that
sends events to the object which receives those events. The arc is labeled with a list of the events that can
be sent.

20




Table 2: State Transition Table.

| Current I Event | Parameters I Guard ” Next ! ActionJ

Child Birthday age < 17 Child
Child Birthday age = 17 Adult
Child Death “|| Terminal
Adult Birthday age < 64 Adult
Adult Birthday age = 64 Senior
Adult Death Terminal
Senior Birthday Senior
Senior Death Terminal
Unemployed | Hiring salary salary < 100,000 || MiddleClass
Unemployed | Hiring salary salary > 100,000 || Wealthy
MiddleClass | Raise salary salary > 100,000 || Wealthy
MiddleClass | Fired Unemployed
Wealthy Paycut salary salary < 100,000 || MiddleClass

.| Wealthy Fired Unemployed

We find it convenient to use a partial event flow diagram when defining the dynamic model of a single
object, showing a single box with an input arrow labeled with a list of external events to which the object
can respond, and an output arrow labeled with a list of events which the object can send to other objects,
as shown for a Person in Figure 4.

Birthday
Death
Hiring
Raise
Fired
Paycut

Person

Figure 4: Event Flow Diagram for Person.

4.3 The Extended Functional Model

The extended functional model uses data flow diagrams (DFDs) in the manner specified in Section 2.3.
The corresponding process descriptions for the lowest level processes are specified using Z dynamic schemas

(Section 3.1.2).

4.3.1 Useof Z

For each leaf bubble, a Z static schema is defined. It includes either the corresponding object’s A schema,
in the case that the object’s attribute values are modified by the operation, or by the object’s = schema, in
the case that the object’s attribute values are not modified by the operation. Inputs that come from other
active objects are defined by Z decorated input variables, while outputs that go to other active objects are
defined by Z decorated output variables. Access to attributes from other passive objects should be handled
by including either the A or = schema of the corresponding object or association as needed.

21




4.3.2 Functional Mode! Example

Consider the object diagram in Figure 5. This models a course section taught by one or more faculty

Faculty

teaching

grade Section

( \ graded_by
assigned l

Student Gradeable

gname

max_score
scored

-

score

Figure 5: Object Model for Grading System.

and attended by a number of students. For each section a number of gradeables are defined (homework,
exams, projects), with attributes of the gradeable’s name, the maximum score that can be attained on that
gradeable, and the gradeable’s weight in the course. (For a given section, the sum of the weights should be
1.00). Each student is associated with each gradeable via the scored association, with its link attribute score.
The student also has a grade in the course, indicated by the link attribute grade on the assigned association.
The corresponding Z schemas relevant to the functional model are as follows.

__Gradeable
gname :seqCHAR
maz_score: R
weight : R

maz_score > 0.0
wetght > 0.0
weight < 1.0

— Graded_by
graded_by : Gradeable — Section

> gweight = 1.0
V g:Gradeable|(g,s)Egraded_by

22




__Scored Attr
score: R

score > 0.0

—Scored
_scored : (Student «» Gradeable) — Scored Atir

. Assigned Attr
grade : {A,A-,B+,B,B—,C+,C,C-,D,F}

. Assigned
assigned : (Student « Section) — Assigned Attr

One of the operations required for this system is as follows. Given a specific section and a gradeable
name, calculate the minimum and maximum scores attained on that gradeable, as well as the mean and
variance. Figure 6 and Figure 7 show the top level DFD and the top level decomposition respectively.

section

min, max, mean, var

Calculate
Gradeable
Statistics

User User

grade_name

Figure 6: Top Level DFD (Context Diagram).

Gradeable

Graded_by
Figure 7: Top Level DFD Decomposition.

In Figure 7, Get Students, Get Gradeable, and Get Scores are leaf processes. They are represented by the
following Z schemas.

23




__GetStudents
=Assigned
section? : Section
students! : P Student

students! = dom((dom assigned) > {section?})

_GetGradeable
ZEGradeable
=Graded_by
grade_name? : seqCHAR
section? : Section
gradeable! : Gradeable

Jg: Gradeable o g.gname = grade_name? A (g, section?) € graded_by A gradeable! = g

__GetScores
ZScored
students? : P Student

gradeable? : Gradeable

scores! : (Student « Gradeable) - R

scores! = {s : Student; g : Gradeable; n: R | (s,g,n) € scored A s € students? A g = gradeable?}

Figure 8 shows a further level of decomposition of the process Calc Stats. This decomposition could
probably have been included at the first level, but is shown to illustrate multiple level decomposition.

min, max

Figure 8: Decomposition of Calc Stats.

In Figure 8, Calc Limits, Count Scores, Calc Mean, and Calc Variance are leaf processes. They are
represented by the following Z schemas.

24




— CalcLimits
scores? : (Student «— Gradeable) = R
min!,maz! : R

min! = min(ran scores?)
maz! = max(ran scores?)

— CountScores
scores? : (Student — Gradeable) — R
count! : N

count! = #scores?

__CalcMean
scores? : (Student «— Gradeable) = R
count? : N
mean! : R

count? > 0
mean! = ( Z scores?s)/count?

V s:dom scores?

__CalcVariance
scores? : (Student « Gradeable) = R
count? : N

mean? : R

var! : R

count? > 0
var! = ( Z (scores?s — mean?)?)/count?

V s:dom scores?

4.4 Analysis Methodology

We recommend a composition methodology, along the lines of Z specification methodologies. That is, in-'
dividual low-level objects are defined first, using inheritance where appropriate. Then they are combined
using aggregation and associations to form more complex objects and systems.

5 Rocket Example

This section presents a simple but complete example of the methodology described in this report. The
example is an event-driven simulation of a ground to ground (unguided) rocket. The Simulation System is
not modeled here, but is assumed to include a Simulation Clock object and a Next Event Queue object. Each
object is assumed to schedule and cancel simulation events with the Next Event Queue. The Simulation
System selects events in proper time-stamp order and sends them to the appropriate object at the proper
time. Rocket objects have access to the Simulation Clock to read the current simulation time.

The Rocket class has subcomponents of a Fuel Tank and a Jet Engine. There are two of each, with each

fuel tank supplying one of the engines. In addition, there is an Airframe object that models the flying part

of the rocket. Figure 9 shows the overall object model.

25




Rocket

2 2

feed
Airframe Fuel Tank eecs Jet Engine

Figure 9: Rocket Object Model.

A Z-like bottom up approach is presented here. First the fuel tank, jet engine, and airframe components
are defined, then they are combined to form the rocket model.
5.1 Simulation Clock

The model presented in this section is a simple simulation clock needed in the functional models of the other
objects. The simulation clock is a passive model. Its sole attribute sim_time can be set to zero, read, and
written.

5.1.1 The Object Model
Let SIMTIME be the set of possible simulation times.
[SIMTIME]

__SimClock
I— sim_time : SIMTIME

5.1.2 The Dynamic Model

The simulation clock is a passive object.

5.1.3 The Functional Model

There is no functional model for the simulation clock.

5.2 Next Event Queue (NEQ)

The NEQ is part of the Simulation System. Although its details are beyond the scope of this example, it
responds to dynamic events Schedule(sim_event) and Cancel(sim_event) from Rocket objects, and sends the
scheduled sim_events to the appropriate object when the simulation clock reaches the sim_event’s scheduled
time.

5.3 Fuel Tank Model

The model presented in this section is somewhat more detailed than required. It includes the ability to
support inflight fueling, and can generate an overflow event. It is used here to demonstrate the concept of
reuse at the analysis level.

26




This model of a fuel tank models the fuel flow aspects of the tank along with the weight of the tank and
the fuel. It does not model physical dimensions or shape. Static parameters are the capacity (maximum
fuel level) and empty weight of the tank (tank weight), along with the density (weight per unit) of the fuel.
State variables include the input flow rate (used in filling) and output flow rate (used in drawing fuel out),
and the current fuel level, along with the total weight of the tank and fuel (fuel tank weight). The latter is
a derived attribute calculated from the empty tank weight, the fuel density, and the fuel level. Units aren’t
important, as long as they are consistent for all attributes.

The dynamic behavior modeled includes filling the tank, using fuel from the tank, and fueling the tank
while fuel is being used. The input and output flow rates are specified by external objects, and the tank
sends events to those external objects when it overflows or runs empty. To simplify the model a little, it is
assumed that in the FillAndUse state the two flow rates are close enough and the time in this state short
enough that the tank will neither overflow nor run empty while in this state.

Since this is an event-driven simulation model it is important to keep track of the simulation time at
which the state variable values are valid. Thus the tank_sim_time attribute maintains the tank simulation
time.

5.3.1 The Object Model

The object model consists of the single object Fuel Tank, since it has neither components nor a superclass.
The Z Static Schema is as follows.

— FuelTank
tank_sim_time : SIMTIME
input_flow_rate : R
output_flow_rate : R
Fuel_level : R

capacity : R

tank_weight : R
fuel_density : R
fuel_tank_weight : R

fuel_level < capacity
fuel_tank_weight = tank_weight + (fuel_density)( fuel_level)

5.3.2 The Dynamic Model

The dynamic model state transition diagram is shown in Figure 10, and the corresponding state transition
table is in Table 3. The partial event-flow diagram is shown in Figure 11.

Empty State In this state the tank is empty, and no fuel is flowing in or out. There are no actions or
activities in this state.

_ Empty
t: FuelTank

t.fuel_level =0
tanput_flow_rate =0
t.output_flow_rate = 0

27




StartFill(flow_rate) StopFili[fuel_level=capacity]/Cancel(TankFull)

Fillin,
£ TankFull/Overflow
Em Jentry: Full
pty Schedule(TankFull) ul
Jexit:
Update Level
StartUse(flow_rate)/Cancel(TankFull)

StartFill(flow_rate)/Overflow

StopUse StopFill[fuel_level < capacity)/Cance)(TankFull)

Fill And Use

Jexit: Partially Filled
Update Level
StartFill(flow_rate)
StartFill(flow_rate)/Cancel(TankEmpty)
StopFill StopUse/Cancel(TankEmpty)
Using
fentry: StartUse{flow_rate)
Schedule
(TankEmpty)
Jext: StartUse(flow_rate)
TankEmpty/ChangeFuelFlow{0) Update Level

Figure 10: Fuel Tank State Transition Diagram.

PartiallyFilled State In this state the tank has some fuel but is not full. It represents a stable condition,
with no input or output flow of fuel. There are no actions or activities in this state.

— PartiallyFilled
t: FuelTank

t.fuel_level > 0
t.fuel_level < t.capacity
tainput_flow_rate =0
t.output_flow_rate = 0

StartFill StartUse
StopFill StopUse
Overflow ChangeFuelFlow(0)
TankFull FuelTank Schedule
TankEmpty Cancel

Figure 11: Fuel Tank Event Flow Diagram.

28




Table 3: Fuel Tank State Transition Table.

| Current | Event | Parameters | Guard || Next | Action
Empty StartFill flow_rate Filling
Filling StopFill fuel_level = capacity || Full Cancel(TankFull)
Filling StopFill fuel_level < capacity || PartiallyFilled | Cancel(TankFull)
Filling TankFull Full Overflow
Filling StartUse flow_rate FillAndUse Cancel(TankFull)
Full StartFill flow_rate Full Overflow
Full StartUse flow_rate Using
Using TankEmpty Empty ChangeFuelFlow(0)
Using StopUse PartiallyFilled | Cancel(TankEmpty)
Using StartFill flow_rate FillAndUse Cancel(TankEmpty)
PartiallyFilled | StartFill flow_rate Filling
PartiallyFilled | StartUse flow_rate Using
FillAndUse StopUse Filling
FillAndUse StopFill Using

Full State In this state the tank is filled to capacity with fuel. It represents a stable condition, with no
input or output flow of fuel. There are no actions or activities in this state.

— Full

t: FuelTank

t.fuel_level = t.capacity
tinput_flow_rate =0
t.output_flow_rate = 0

Filling State In this state the tank is being filled. There is no output flow of fuel. Upon entering this
state the fuel tank determines when it will be full, and schedules a TankFull event for that time. When
leaving this state the fuel tank updates its fuel level; if an overflow hasn’t occurred it cancels the scheduled
TankFull event. There are no other actions or activities while in this state.

__Filling

t: FuelTank

t.fuel level > 0
t.fuel_level < t.capacity
t.input_flow_rate > 0
t.output_flow_rate = 0

29




Using State In this state fuel is being drawn out of the tank. There is no input flow of fuel. Upon entering
this state the fuel tank determines when it will be empty, and schedules a TankEmpty event for that time.

" When leaving this state the fuel tank updates its fuel level; if a TankEmpty event hasn’t occurred it cancels

the scheduled TankEmpty event. There are no other actions or activities while in this state.

—Using
t: FuelTank

t.fuel level > 0
t.fuel_level < t.capacity
tinput_flow_rate =0
t.output_flow_rate > 0

FillAndUse State In this state fuel is being drawn out of the tank and pumped into the tank simultane-
ously. In this model it is assumed that an TankFull or TankEmpty event will not occur in this state. When
leaving this state the fuel tank updates its fuel level. There are no other actions or activities while in this
state.

__FillAndUse
t: FuelTank

t.fuel_level 2 0
t.fuel_level < t.capacity
tinput_flow_rate > 0
t.output_flow_rate > 0

5.3.3 The Functional Model

The functional model for the fuel tank was developed by analyzing the actions and activities in the dynamic
model. The actions consist only of sending events Cancel (to the NEQ), Overflow (to the fueling source), and
ChangeFuelFlow(0) (to the fuel consuming object). These are trivial actions which do not require a functional
model. States Empty, Partially Filled, and Full are idle states with no activities. Thus the top level data
flow diagram, shown in Figure 12 consists of processes Fill Tank, Fill and Use, and Use Fuel corresponding
to the activities in states Filling, Fill And Use, and Using respectively. In addition, the derived variable
fuel_tank_weight’s calculation is shown as a fourth process. These four processes are further decomposed
by the data flow diagrams in Figures 13 through 16. These are discussed and the dynamic schemas presented
in the following sections.

Fill Tank As shown in Figure 13, process Fill Tank is decomposed into three leaf processes, Determine
Interval, Calculate Filled Level, and Predict Tank Full Time.

Determine Interval In order to determine how much fuel has been added since the tank level was last
updated it is necessary to determine how much simulation time has passed since the object’s state was last
updated. This process determines the (simulation) time increment between the current simulation time
(from the simulation clock) and the time that the attribute values were valid.

__Determinelnterval
ZFuelTank
ES5imClock
interval! : SIMTIME

intervall = sim_time — tank_sim_time

30




Jet
Engine

input_flow_rate

fuel_tank_weight

output_flow_rate

output_flow_rate

input_flow_rate

Fuel Fuel
Source Consumer

fuel_density
tank_weight
fuel_level

fuel_level

Fuel Tank

Figure 12: Fuel Tank Level 0 DFD.

Calculate Filled Level This process calculates the new level to which the tank has been filled, based on
the input flow rate and the interval over which this flow rate has been sustained. This models the exit action

Update Level for the Filling state.

__ClualculateFilled Level
AFuelTank
2SimClock
interval? : SIMTIME

fuel_level' = fuel_level + (interval?)(input_flow_rate)
tank_sim_time' = sim_time

Predict Tank Full Time This process is needed when the Filling state is first entered. It calculates the
simulation time at which the tank will overflow if still in this state, so that a TenkFull simulation event can

be scheduled.

__PredictTank FullTime
ZFuelTank
over flow_eveni_time! : SIMTIME

over flow_event_time! = tank_sim_time + (capacity — fuel_level) [input_flow_rate

Fill and Use As shown in Figure 14, process Fill and Use is decomposed into three leaf processes, Deter-
mine Interval, Calculate Net Flow, and Calculate Fill-Use Level. Process Determine Interval is identical to

that in Figure 13 and is “reused” here.

31




Sim Clock NEQ

overflow_event_time

Calculate
Filled

Level

12

input_flow_rate

tank_sim_time
fuel_level

tank_sim_time fuel_level

capacity

tank_sim_time

input_flow_rate

Fuel Tank

Figure 13: Fuel Tank D¥D for Fill Tank.

Calculate Net Flow This process calculates the net flow rate into the fuel tank due to simultaneous
filling and using.

__CalculateNetFlow
EFuelTank
net_flow_rate! : R

net_flow_rate! = input_flow_rate — output_flow_rate

Calculate Fill-Use Level This process calculates the new level to which the tank has been filled, based
on the net flow rate and the interval over which this flow rate has been sustained. This models the exit
action Update Level for the Fill And Use state.

__CalculateFill — UseLevel
AFuelTank

=SimClock
net_flow_rate? : R
interval? : SIMTIME

fuel level' = fuel level + (interval?)(net_flow_rate?)
tank_sim_time' = sim_time

Use Fuel As shown in Figure 15, process Use Fuel is decomposed into three leaf processes, Determine
Interval, Calculate Used Level, and Predict Tank Empty Time. Process Determine Interval is identical to
that in Figure 13 and is “reused” here.

32




Sim Clock

net_flow_rate

Calculate
Fill-Use
Level
22

Calculate
Net Flow
2.1

output_flow_rate

input_flow_rate

Fuel Tank

Figure 14: Fuel Tank DFD for Fill And Use.

Calculate Used Level This process calculates the new level for the tank, based on the output flow rate
and the interval over which this flow rate has been sustained. This models the exit action Update Level for
the Using state. '

__CalculatelU sed Level
AFuelTank
=SimClock
interval? : SIMTIME

fuel_level' = fuel_level — (interval?)(output_flow_rate)
tank_sim_time' = sim_time

Predict Tank Empty Time This process is needed when the Using state is first entered. It calculates
the simulation time at which the tank will be empty if still in this state, so that a TankEmpty simulation
event can be scheduled.

__PredictTank EmptyTime
ZFuelTank
tank_empty_event_time! : SIMTIME

tank_empty_event_time! = tank_sim_time + fuel_level [output_flow_rate

Get Fuel Tank Weight As shown in Figure 16, process Get Fuel Tank Weight is decomposed into two
leaf processes, Determine Fuel Weight and Calculate Total Weight. While this might be considered as

~ decomposing a process too far due to the simplicity of the calculation involved, it is included for illustrative
purposes.

33




Sim Clock

NEQ

tank_empty_event_time

Calculate

Used
Level

31

Determine
Interval
11

output_flow_rate

tank_sim_time|
fuel_level

tank_sim_time fuel_level

output_flow_rate

tank_sim_time

Fuel Tank

Figure 15: Fuel Tank DFD for Use Fuel.

Determine Fuel Weight This process calculates the weight of the current fuel load.

— Determine FuelWeight
EFuelTank
Fuel_weight! : R

fuel_weight! = (fuel_level)(fuel _density)

Calculate Total Weight This process calculates the total weight of the tank and fuel.

__CalculateT otalWeight
ZFuelTank
fuel_weight? : R
fuel_tank_weight! : R

fuel_tank_weight! = fuel_weight? + tank_weight

5.4 Jet Engine

This is a simple engine model that converts an input fuel flow rate to a proportional output thrust. This
model does not include physical dimensions. Static attributes include the manufacturer and model number,
weight, maximum input fuel flow rate, and a constant thrust factor. State variables include the current
input fuel flow rate and current thrust (a derived attribute). Constant thrust is generated proportional to

the input fuel flow rate.

The dynamic behavior consists of states OFF and RUNNING. The engine is OFF whenever the input
fuel flow rate is zero. (In a real jet engine the fuel flow is started and then an ignition spark (event) is
provided to start the engine. A flameout can cause the engine to stop with fuel still flowing. Such behavior
is not modeled here.) The engine responds to messages to start and to change the input fuel flow rate, and

sends changes in thrust to any connected vehicle.

34




Air Frame

Determine
Fuel
Weight

fuel_weight

4.1

fuel_level
fuel_density

Fuel Tank

Figure 16: Fuel Tank DFD for Get Fuel Tank Weight.

5.4.1 The Object Model

The object model consists of the single object Jet Engine, since it has neither components nor a superclass.

The Z Static Schema is as follows.
Let MODEL_TYPE be the set of all jet engine model numbers.
[MODEL_TY PE] |

—JetEngine

fuel_tank_weight

manu facturer : seqCHAR
model_num : MODEL_TY PE
engine_weight : R
mazimum_fuel_flow_rate : R
thrust_factor : R
current_fuel_flow.rate : R
current_thrust: R

engine_weight > 0
mazimum_fuel_flow_rate > 0
thrust_factor > 0
current_thrust > 0
current_fuel_flow_rate > 0
current_fuel_flow.rate < mazimum_fuel_flow_rate
current_thrust = (thrust_factor)(current_fuel_flow_rate)

5.4.2 The Dynamic Model

The dynamic model state transition diagram is shown in Figure 17, and the corresponding state transition

table is in Table 4. The partial event flow diagram is shown in Figure 18.

35




ChangeFuelFlow(flow_rate)

Off
fentry:
ChangeThrust(0)

ChangeFuelFlow(flow_rate){flow_rate = (]

ChangeFuelFlow(flow_rate){flow_rate > 0]

Figure 17: Jet Engine State Transition Diagram.

Table 4: Jet Engine State Transition Table.

| Current | Event | Parameters | Guard || Next | Action |

Off ChangeFuelFlow | flow_rate Running
Running | ChangeFuelFlow | flow_rate flow_rate > 0 || Running
Running | ChangeFuelFlow | flow_rate flow_rate = 0 || Off

Off State In this state the engine is not running since the input flow rate is zero. Upon entering this state
the engine generates a ChangeThrust(0) event. There are no other actions or activities while in this state.

—Off
e : JetEngine

e.current_fuel_flow_rate =0

Running State In this state the engine is running since the input flow rate is greater than zero. Upon
entering this state the engine generates a ChangeThrust(thrust_level) event, where the thrust level depends
on the input fuel flow rate, and a StartUse(rate) event to the fuel source (Fuel Tank). On exit a StopUse
event is sent to the fuel source (Fuel Tank). There are no other actions or activities while in this state.

. Running
e: JetEngine

e.current_fuel_flow_rate > 0

ChangeFuelFlow

ChangeThrust

StartUse Jet Engine
StopUse

Figure 18: Jet Engine Event Flow Diagram.

36




5.4.3 The Functional Model

The data flow diagram for the jet engine is shown in Figure 19. This process is simple enough that it is

Fuel
Source

Air Frame

current_fuel_flow_rate current_fuel_flow_rate current_thrust

Jet Engine

Figure 19: Jet Engine DFD for Calculate Thrust.

decomposed no further. Process Calculate Thrust calculates the thrust for a given input fuel flow rate.

__CalcThrust
AJetEngine

current_thrust' = (thrust_factor)(current_fuel_flow_rate)

5.5 Airframe

This is a model of an airborne vehicle. It represents a moving object in a three dimensional coordinate
system, Location and movement of a point mass is represented.

Static attributes include serial number and manufacturer, weight, and two colors. State variables include
the location (x, y, and z), velocity, and acceleration of the center of mass, the azimuth and elevation of the
centerline, the speed (a derived attribute), and the simulation time at which these values are (were) valid.

The dynamic behavior modeled includes launching the airframe into powered flight, in which the effects
of gravity are ignored, until the fuel runs out, then allowing the airframe to follow an inertial trajectory until
it crashes into the ground.

5.5.1 The Object Model

The object model consists of the single object Airframe, since it has neither components nor a superclass.
The Z Static Schema is as follows.

37




[AF_MODELS]

__Air frame
tail_num : seq ALPHANUM
model type : AF_MODELS

air frame_weight : R
attached_wetght : R

air frame_simtime : SIMTIME
applied_thrust: R

S SN

S TITLEE

8

)

i

speed: R

air frame_weight > 0.0
attached_weight > 0.0
applied_thrust > 0.0
(6 > —180.0) A (6 < +180.0)
(¢ > 0.0) A (¢ < 90.0)

speed = 4 [VE+VZI+ V2

5.5.2 The Dynamic Model

The dynamic model state transition diagram is shown in Figure 20, and the corresponding staté transition
table is in Table 5. The partial event flow diagram is shown in Figure 21.

Table 5: Airframe State Transition Table.

| Current | Event | Parameters | Guard || Next | Action |
Ready ChangeThrust | value value > 0 || PoweredFlight
PoweredFlight | ChangeThrust | value value = 0 || InertialFlight
InertialFlight | ChangeThrust | value value > 0 || PoweredFlight | Cancel(Collision)
InertialFlight | Collision Crashed /

38




Ready State In this state the airframe has been aimed, and is ready to launch. The applied thrust is

ChangeThrust(valuc)[value > 0.0]

Powered Flight
fentry:
Update State
fexit:
Update State

ChangeThrust(value){valuc = 0.0]

ChangeThrust(value)[value > 0.0]/Cancel(Collision)

Figure 20: Airframe State Transition Diagram.

Schedule(Collision)
ChangeThrust Airframe Cancel(Collision)

Figure 21: Airframe Event Flow Diagram.

zero. There are no actions or activities while in this state.

a.applied_thrust = 0.0

— Ready
a: Air frame
a.Vz = 0.0
a.Vy =0.0
a.V, =0.0
a.A, =0.0
a.Ay, =0.0
a.A, =00

Powered Flight State In this state thrust is applied. On entering this state the airframe updates its
simulation time and acceleration. When leaving this state the airframe updates its position and velocity.

There are no other actions or activities while in this state.

— PoweredFlight
a : Air frame

a.applied_thrust > 0.0

39




Inertial Flight State In this state there is no applied thrust. On entering this state the airframe updates
its simulation time and acceleration. It then determines when it will hit the ground and schedules a collision
event. When leaving this state the airframe updates its position and velocity. If a collision hasn’t occurred it
cancels the previously scheduled collision event. There are no other actions or activities while in this state.

_Inertial Flight
a: Air frame

a.applied_thrust = 0.0
(a.Vz > 0.0) V (a.Vy > 0.0) V (a.V, > 0.0)

Crashed State In this state the airframe has hit the ground. There are no actions or activities while in
this state.

__Crashed

a: Air frame
a.applied_thrust = 0.0
a.V, =0.0

a.V, =0.0

a.V, =0.0

a.A;, =0.0

a.Ay, =0.0

a.A, =00

5.5.3 The Functional Model

The functional model is based on the state transition diagram. Since nothing happens in either the ready
or the crashed states, there are two main processes to be performed, as indicated in the top level DFD of
Figure 22, corresponding to the states Powered Flight and Inertial Flight.

Perform Powered Flight As indicated in Figure 23, process Perform Powered Flight is further decom-
posed into Determine Interval, Calculate Position, Calculate Velocity, and Calculate Acceleration.

Determine Interval In order to determine how far the vehicle has traveled since the last update, it is
necessary to determine how much simulation time has passed since the object’s state was last updated. This
process determines the (simulation) time increment between the current simulation time (from the simulation
clock) and the time that the attribute values were valid.

__ Determinelnterval
SAir frame
=SimClock
intervall : SIMTIME

interval! = sim_time — air frame_simtime

40




SimClock

Perform
Powered
Flight

1 position, velocity, acceleration

position, velocity

Figure 22: Airframe Level 0 DFD.

Calculate Position This process calculates the new position of the vehicle based on the interval traveled
at constant acceleration. Effects of gravity and air drag are ignored.

__CalculatePosition
AAir frame
interval? : SIMTIME

X' = X + Vg (interval?) + 3 Az (interval?)?
Y' =Y + Vy(interval?) + 1 A, (interval?)?
Z' = Z + V,(interval?) + 3 A (interval?)?

Calculate Velocity This process calculates the new velocity of the vehicle based on constant acceleration.
Effects of gravity and air drag are ignored.

__CalculateVelocity
AAir frame
interval? : SIMTIME

V! =V, + Az(interval?)
V, =V + Ay(interval?)
V] =V, + A, (interval?)

41




Sim Clock

sim_time

airframe_simtime

Calculate
Acceleration
1.4

Calculate
Velocity
1.3

Calculate

position

Vx, Vy, Vz

Vx, Vy, Vz
Ax, Ay, Az

applied_thrust
airframe_weight
attached_weight
theta, phi

Figure 23: Airframe DFD for Perform Powered Flight.

Calculate Acceleration This process calculates the new acceleration of the vehicle based on the applied
thrust, the total weight of the vehicle, and the direction of flight. Effects of gravity and air drag are ignored.
The direction of flight is determined from # and ¢ as shown in Figure 24.

—_Clalculate Acceleration
AAir frame
1 _ applied_thrust
Az - (airframe_wei h‘tL-l_:ta'.Ittac;zed_weight) cos ¢ cos 6
A appiie rus .
AU T \airframe_wei ht+attached...weight) cos ¢ sin
Al = ( applied_thrust )sin ¢
z = \airframe_weight+attached weight

Perform Inertial Flight Asindicated in Figure 25, process Perform Inertial Flight is further decomposed
into Determine Interval, Calculate Inertial Position, and Calculate Inertial Velocity. Process Determine

Interval is the same as in Figure 23.

42




>

———m—m -

Figure 24: Airframe Azimuth and Elevation.

Calculate Inertial Position This process calculates the new position of the vehicle during inertial flight.
Constant velocity in X and Y are assumed. Effects of air drag are ignored.

__CalculateInertial Position

AAir frame

interval? : SIMTIME
gravity : R

gravity = 32.0
X' = X + V (interval?)
Y =Y + V,(interval?)

Z' = Z + V,(interval?) — 3 (gravity)(interval?)?

Calculate Inertial Velocity This process calculates the new velocity of the vehicle during inertial flight.
Constant velocity in X and Y are assumed. Effects of air drag are ignored.

__CalculateIner tial Velocity
AAir frame
interval? : SIMTIME

gravity: R

gravity = 32.0
V! = V, + (gravity) (interval?)

43




Sim Clock

Calculate
Inertial
Velocity

_Airframe

Figure 25: Airframe DFD for Perform Inertial Flight.

5.6 Rocket

As shown in Figure 9, the Rocket class is an aggregate with an Airframe, two Fuel Tanks and two Jet Engine
subcomponents. Each fuel tank supplies one of the engines. The rocket is powered by the two engines. It is
assumed that the two engines are mounted symmetrically on two sides of the rocket, and that they produce
equal thrusts at all times. Thus the rocket is powered by a thrust equal to the sum of the thrusts of the
two engines, applied along the centerline of the rocket body. The total vehicle weight is equal to that of the
vehicle body, the two empty tanks, and the two engines. Fuel weight is ignored in this example.

5.6.1 The Object Model

The object model for the Rocket contains two each Fuel Tank and Jet Engine objects, along with one Airframe
and an embedded association feeds. The subcomponents Fuel Tank and Jet Engine are modeled as sets with
cardinality of two, and the Airframe as an attribute. (Alternative approaches would be to declare two
explicit tank attributes and two explicit engine attributes, or to define a set of airframes with a cardinality
of one). This is a concrete aggregate model, and includes the attributes tail num (the rocket’s tail number)
and model_type. The Z static schema is as follows.

44




Let ROCKET_MODELS be the set of rocket models.

[ROCKET_MODELS)]

— Rocket
tail_num : seq ALPHANUM
model_type : ROCKET_MODELS
frame: Air frame

tanks : PFuelTank

Jets : PJetEngine

feeds : FuelTank > JetEngine

#tanks = 2
#jets =2
dom feeds = tanks
ran feeds = jets
Vt:tanks e 3j:jets| ((t— j) € feeds
A t.fuel_level = 0.0 = j.current_fuel_flow_rate =0
A t.fuel _level > 0.0 = j.current_fuel_flow_rate = jomazimum_fuel_flow_rate
A t.output_flow_rate = j.current_fuel_flow_rate)
frame.attached_weight = sum{j : JetEngine | j € jets o j.engine_weight}
+sum{t: FuelTank | t € tanks o t.fuel_tank_weight}
frame.applied_thrust = sum{j : JetEngine | j € jets e j.current_thrust}

5.6.2 The Dynamic Model

The state of the rocket is made up of the concurrent states of its constituent parts. However, the parts are
not free to assume their states independently due to constraints between them in the context of the rocket.
Table 6 lists all of the combinations of states of the airframe, the jet engine, and the fuel tank, and indicates
which are possible in the rocket configuration. Note that the Filling and the Fill and Use states of the fuel
tank are omitted since they are not used in this example. Since filling the tank is not being modeled, it is
further assumed that the tank is initially full.

Table 7 lists all of the allowable combinations of states along with an appropriate title. These represent
the states of the Rocket. In this case the states of the rocket coincide with the states of the airframe since
there is only one combination of states of the fuel tank and engine for each airframe state. Analyzing the
cause of each state allows the events to be derived for the rocket, resulting in the state transition diagram of
Figure 26 and the corresponding state transition table in Table 8. Thus we have derived the behavior of the
aggregate rocket from the constrained behaviors of its component parts. The event flow diagram is shown
in Figure 27.

5.6.3 The Functional Model

In this example there are no additional calculations needed beyond those of the rocket’s individual parts.
Thus the rocket’s functional model is the combination of all of its components’ functional models.

5.7 Summary

Although this is a very simple rocket model, it illustrates the application of the Z extensions to Rumbaugh’s
informal modeling approach to develop a formal specification of a complex system by combining the formal
specifications of its constituent parts.

45




Table 6: Available state combinations of components

Airframe Fuel Tank Engine Rocket Reason

Ready Empty Ooff Not Possible | Tank initially full
Ready Empty Running || Not possible | Empty and Running
Ready PartiallyFilled } Off Not Possible | Tank initially full
Ready PartiallyFilled | Running || Not possible | Running and not Using
Ready Full Off Possible

Ready Full Running || Not possible | Running and not Using
Ready Using Off Not possible | Using and Off

Ready Using Running || Not possible | Ready and Running
PoweredFlight | Empty Off Not possible | Off and PoweredFlight
PoweredFlight | Empty Running || Not possible | Running and not Using
PoweredFlight | PartiallyFilled | Off Not possible | PoweredFlight and Off
PoweredFlight | PartiallyFilled | Running || Not possible | Running and not Using
PoweredFlight | Full Off Not possible | PoweredFlight and Off
PoweredFlight | Full Running || Not possible | Running and not Using
PoweredFlight | Using Off Not possible | PoweredFlight and Off
PoweredFlight | Using Running || Possible

InertialFlight | Empty off Possible

InertialFlight | Empty Running || Not possible | InertialFlight and Running
InertialFlight | PartiallyFilled | Off Not possible | PartiallyFilled and Off
InertialFlight | PartiallyFilled | Running || Not possible | Running and not Using
InertialFlight | Full Off Not possible | Full after launch
InertialFlight | Full Running || Not possible | Running and not Using
InertialFlight | Using Off Not possible | Using and Off
InertialFlight | Using Running |} Not possible | InertialFlight and Running
Crashed Empty Ooff Possible

Crashed Empty Running || Not possible | Empty and Running
Crashed PartiallyFilled |{ Off Not possible | Off implies Empty
Crashed PartiallyFilled | Running || Not possible | Running and not Using
Crashed Full Off Not possible | Crashed and Full
Crashed Full Running || Not possible | Running and not Using
Crashed Using Off Not possible | Using and Off

Crashed Using Running || Not possible | Crashed and Running

6 Summary

The approach described in this report of integrating informal methods with formal methods has been taught
in an introductory course in Software Engineering at the Air Force Institute of Technology. In the first
two course offerings, we taught informal object-oriented modeling for the first seven weeks of the quarter,
then introduced formal methods during the last three, loosely coupling the two using objects as the basis
for the Z schemas. Students tended to treat this as a change in topic, and found the three week formal
portion somewhat difficult to understand as a stand-alone topic. By introducing the mathematics and Z
formalism at the beginning of the quarter, there is more time to “relearn” the mathematics over the space of
the quarter, and integrating the formalism as a way to document the informal model in the data dictionary
adds to the sense of purpose of the formalism.

However, some of the students still don’t see the usefulness of the formal extensions. They express the
perception that unnecessary complexity and difficulty has been added to an existing methodology. Part of
this is due to the lack of an executable formal language and a general lack of automated tools for Z that
build on the formal specification. Much of the work in performing Z data and operation refinement as well

46




Table 7: Available states of the Rocket

Airframe Fuel Tank | Engine Rocket

Ready Full Off Pre-Flight

PoweredFlight | Using Running || Accelerating

InertialFlight | Empty Off Coasting

Crashed Empty Off Impacted
Launch

Accelerating

Collision

Figure 26: Rocket State Transition Diagram.

as the final mapping to some implementation language must be done manually. Another problem is cultural
in nature. While it is improving with each new class, many of our students have seen nothing concerning
the use of formal methods other than possibly proof of correctness techniques (which provided an extremely
negative impression).

This course is a required course for all graduate computer students (approximately 50 per year). There-
fore, we have exposed a substantial number of students to the use of formal methods for system development.
In addition to this course, all software engineering students (approximately 15 per year) are required to take
an additional course entitled Formal-Based Methods in Software Engineering. This course uses the Software
Refinery environment which contains a mathematically-based, wide-spectrum formal specification language
called Refine which is also executable. Refine integrates set theory, logic, objects, a formal object base,
transformation rules, and pattern matching [6]. Additionally, the Software Refinery environment includes
a parser generator and X11 interface toolkit. Essentially, Software Refinery can be used to build program
transformation systems [15] in which high level formal specifications are used as the basis for synthesizing
lower level implementations in languages like C and Ada. With the basis provided by the introductory

Table 8: Rocket State Transition Table.

| Current | Event | Parameters | Guard || Next | Action |
Pre-Flight Launch Accelerating
Accelerating | TankEmpty Coasting
Coasting Collision Impacted

47




ChangeFuelFlow
ChangeThrust .
Fuel Tank StartUse Jet Engine ge s Airframe

StopUse
Schedule

Cancel Collision

: : Schedule

TankEmpty Simulation Cancel

Figure 27: Rocket Event Flow Diagram.

course, the software engineering students are in a position to build object model transformation systems. In
particular, it is shown how object-based domain models can be used to develop domain-specific languages and
how these languages can be transformed in a behavior-preserving way using object model to object model
transformations. Thus, the elements of how to build a specification to code level transformation system are
not only discussed in class, but practical experience with constructing and using such systems is obtained.
Overall, this course has been very successful at simultaneously introducing students to formal methods
and object-oriented modeling. This course, coupled with our advanced course in formal-based methods,
where we do have more sophisticated tool support, produces a very enlightened set of software engineers.

48




A Math Review

This section reviews the basic discrete math used in Z, and introduces some new notation.

A.1 Set Definition

In using Z for formal specification, all variables must be defined over a set. Therefore it is important to be
able to define sets clearly. This section reviews some basic methods of defining sets, and discusses issues of
set membership and type declarations. :

A.1.1 Basic Sets

A basic set can be defined by simply stating what its members are. No further detail is provided about the
set’s members.

Let PERSONS be the set of all persons.

Let STUDENTS be the set of all students.

Let SSAN be the set of all social security numbers.

Let PERNAMES be the set of all persons’ first, middle or last names.
Let CHAR be the set of printable characters.

Let DIGIT be the set of printable digits. (DIGIT ¢ CHAR).

A.1.2 Standard Sets
Z  Integers.
N Natural numbers.
N1 Natural numbers greater than zero.
R Real numbers.

A.1.3 Explicit Enumeration
A set can be defined by listing its members in braces. The symbol “=” is used to define a set.
Gradeable = {Homework, Project, Midterm, Final}
This syntax could also be used to define basic sets.

STUDENTS = {All students}

A.1.4 Powerset

The powerset of a set S (written as PS) is the set of all subsets of the specified set, including the null set
{ } and the specified set itself.

S 2{1,2,3}
PS ={{ },{1},{2}, {3}, {1,2}, {1,3}, {2,3},{1,2,3}}

A.1.5 Set Membership

The symbol € represents set membership. If variable z is a member of set A, then we write z € A.
If £ = Midterm then z € Gradeable.

Note that “c € Gradeable” is a predicate that can be true or false (see Section A.5). Thus if z = Quiz
then z € Gradeable would be false.

49




A.1.6 Type Declaration
A variable can be declared to be of the same type as members of a set. That is, the variable is declared

“over the set.”

z: Gradeable
y: N
s: SSAN

Thus s : SSAN declares that s is a variable that is of the type of a member of set SSAN. Note the
difference between the type declaration and set membership. If z : Gradeable, then z € Gradeable is true
for any value of z.

A.1.7 Set Types

If the variable to be declared is to be a set itself, then the powerset operator can be used. For example,
exams: P Gradeable

declares ezams to be a set of entities of the same type as in Gradeable. In set notation (Section A.4),
exams C Gradeable.

A.2 Cartesian Product

While all members of a set must be of the same type, a set can be defined over any type. Specifically, a set
member could be an ordered pair. For example, consider the set of pairs { (2,2), (b,1), (c,2) }. Often it is
useful to be able to declare a variable as an ordered pair or as a set of ordered pairs.

Given sets T and U the Cartesian Product, written T' x U, is the set of all ordered pairs whose first
element is from T and whose second element is from U.

For example, if

T = {a, b, c}
U={1,2}
then,
T x U = {(21), (2,2), (b, 1), (b,2), (e 1), (¢, 2)}

TxT= {(a,a), (a,b), (a,¢), (bsa), (b,b), (b,c), (c,a), (¢,b), (c,c) }
UxU={(1,1),(12),(2,1),(2,2)}

Now let

STUDENTS = {Smith, Green}
Gradeable = {Homework, Project, Midterm, Final}

Then we can declare
taken : STUDENTS x Gradeable
That is, “taken” is a pair (a,b) where
a € STUDENTS
b € Gradeable

50




Thus

STUDENTS x Gradeable = {(Smith, Homework), (Smith, Midterm),
(Smith, Final), (Green, Homework), (Green, Midterm), (Green, Final)}

If
taken = (Smith, Final)

then, since taken is a set element, we can write
taken € STUDENTS x Gradeable

What if we want the set of students and the gradeables they have taken at some point in time (i.e. not
all students have taken all gradeables)? We can use the power set to define the set all_taken. (Note that
taken is a pair, while all_taken is a set of pairs).

~

all_taken : P(STUDENTS x Gradeable)
Thus, for example, if everyone has taken only the midterm,
all_taken = {(Smith, Midterm), (Green, Midterm)}
then, since all_taken is a set, we can write (see Section A.4)
all taken C STUDENTS x Gradeable

Similarly we can define A x B x C as the set of all 3-tuples (a;, bj, cx) and so forth.

A.3 Set Operators
Three set operators are of interest here. These are the union U, the intersection N, and subtraction \.
AU B is the set of all z such that z € A or z € B or z is in both.

AN B is the set of all z such that z € A and z € B.
A\ B is the set of all z such that z € A and z ¢ B.

All members of a set must be of the same type. The number of members in a set is defined as the
cardinality of the set, designated with the “#”.

#{a,c,f} =3

A.4 Set Comparison
Sets can be compared as follows.
A C B (Ais a subset of B) is true if all members of A are also members of B.

A C B (Ais a proper subset of B) is true if all members of A are also members of B, but not all members
of B arein A.

A = B (A equals B) is true if all members of A are also members of B, and all members of B are members
of A.

A # B (A not equal to B) is true if the members of A are not the same as the members of B.

51




A.5 Predicates

A proposition is a statement that is true or false.
“The student Smith has a GPA greater than 3.0”
“The student Jones is enrolled in CSCE 594"

A predicate is a proposition with a variable whose value makes the statement true or false. NOTE: For
any predicate there exists a set of values (possibly the empty set) for which the predicate is true.

b

“The student s is enrolled in CSCE 594”

Note that a predicate can include comparators, for example <, >,=, C or anything that will evaluate to
true or false.
Predicates can be combined with the following operators.

not

and

or
implication
equivalence

gy <>1

Remember not to treat implication as “p causes q” but rather “if p then q.” Implication (as with the
others in the list) is a predicate that is true or false, according to the following truth table.

P 9 p=4q
T T T
T F F
F T T
F F T

For example, ,
Student S is enrolled in CSCE 594 = student s has taken CSCE 431.

Is this true or false? This predicate will be true for any student s who has taken CSCE 431 and is enrolled
in CSCE 594. However, the predicate will also be true for all students s who are not enrolled in CSCE 594!
Precedence Sequences of the same operator are evaluated left to right.

aVbVe=(aVb)Ve

The precedence of different operatorsis: = ,A,V,=>, &

—aAb=(~a)Ad

aVbecA-d=(aVd) & (cA(~d))

It is frequently helpful to include parentheses to help clarify the expression.

A.6 Quantification

Quantification allows us to assert a predicate that involves one of a set or all of a set. The general form of
quantification is

3 signature o predicate
VY signature e predicate

where the signature is a list of data types used to formulate the predicate. That is, the signature de-
fines the vocabulary for making mathematical statements expressed as predicates. The predicate describes
relationships among the identifiers (variables) as well as constraints.

52




The signature consist of a set of identifier/class declarations as follows:

1. Identifier/class is a series of identifiers separated by commas followed by a colon and a class.
2. Each identifier/class is separated by semicolons.

3. Class represents a class or set of objects over which the quantification holds.

For example:

3i:Nei>10
This is an example of ezistential quantification. It asserts that there is at least one value in the set of
natural numbers that is greater than ten. Clearly this predicate is always true.

35:1..10005>3Aj<8Aj2=49
This predicate is also true, since j = 7 satisfies the predicate.

Vi:1..10 3% <1000
This is an example of universal quantification. It asserts that all values from 1 to 10 have cubes that are
less than or equal to 1000. This predicate is also true.

Let STUDENTS be the set of all students.
Let IN594 be the set of students enrolled in CSCE 594.
Let HAS431 be the set of students who have taken CSCE 431.

Consider the meaning of the following quantified expressions, when true.

3s5: STUDENTS ¢ s € IN594 A s € HAS431
At least one student is enrolled in CSCE 594 and has taken CSCE 431.

Vs:STUDENTS o s € IN594 A s € HAS431
All students are enrolled in CSCE 594 and have taken CSCE 431.

Js:IN594 e s € HAS431
At least one student enrolled in CSCE 594 has taken CSCE 431.

IN594 C STUDENTS
Everyone enrolled in CSCE 594 is a student (always true).

3s: STUDENTS e s € IN594 = s € HAS431
At least one student is either enrolled in CSCE 594 and has taken CSCE 431 or is not enrolled in
CSCE 594. (Not all students are enrolled in CSCE 594 without having taken CSCE 431).

Vs: STUDENTS ¢ s € IN594 = s € HAS431

All students who are enrolled in CSCE 594 have taken CSCE 431. (No students are enrolled in CSCE 594
who have not taken CSCE 431).
A.7 Set Comprehension

Earlier it was pointed out that for any predicate there is a set of values (possibly empty) for which the
predicate is true. Set Comprehension is a way of using this fact to define a set. The general “Set Former”
construct is as follows.

{z: S| P(z)et(z)}

53




Thus, the elements of this set are all elements which have the form ¢(z) (the term) such that z is a bound
variable (defined by S) and satisfies the predicate P(z). Note that the term is optional if t(z) = z.

Examples:

{z:N|z® € Evenez+1} ={1,9,65,...}

That is, the set of all numbers which are one more than an even cube.

Sy E{n:Nl |7’L3 > lOon}=N\{0,1,2}={3,4,5,}

This is the set of all natural numbers whose cube is greater than 10.

S 2 {n: N |n>10e(n,n?)} = {(11,121),(12,144),...}
This is the set of all pairs where the first element is a natural number greater than ten and the second
element is its square.

S; 2 {z,y: N |z +y=100e (z,y)} = {(0,100),(1,99),...,(100,0)}
This is the set of all pairs of natural numbers whose sum is 100.

Note that for S; and S; the term is optional.

IN594 = {s: STUDENTS | s is enrolled in CSCE 594}
HAS_PREREQ = {s: STUDENTS |s € IN5%4 A s € HAS431}
or

HAS_PRERFEQ = {s: STUDENTS | s € IN594 N HAS431}

Let SSAN be the set of all social security numbers.

STUDENTS £ {s: SSAN; n: PERNAMES | a person with number s and name n is a student}
or

STUDENTS = {s: SSAN; n: PERNAMES |TRUE} = {s: SSAN; n: PERNAMES}

or

STUDENTS : P(SSAN x PERNAMES)

A.8 Relations

We have introduced the concept of an ordered set of pairs (or of tuples in general). We now use that concept
to define how elements of different sets are related. For example, consider the relationship between students
and the faculty members who are their advisors.

Given that sets STUDENTS and FACULTY are defined, then
advises : P(FACULTY x STUDENTS)

Thus advises is a set of pairs, for example:
advises £ {(Jones, Green), (Hartrum, Smith), (Hartrum, Adams)}

This is defined as a relation, or pair-wise mapping between two sets. As a shorthand notation to the above
we write

advises : FACULTY « STUDENTS

A relation defines an m:n mapping. That is, in general, one member of the first set can participate in
the relation with any number of members of the other set, and vice-versa. In the above example, a faculty

54




member may advise several students and, mathematically, a student could have more than one advisor (e.g.
co-advisors). Also, in general, a relation represents a partial mapping. Not every member of either set is
required to participate. Thus some faculty members may not be advising anyone, and some students may
not yet have been assigned an advisor.

Since relation is itself a set of pairs, all set operators can be applied. There are several ways of expressing
that a specific pair is in the relation. These are all propositions or predicates that will evaluate to TRUE if

" the pair is in the relation.

(Hartrum, Smith) € advises
Hartrum + Smith € advises

The second form uses the maplet notation to represent a pair. Membership can also be defined using
tnfiz notation zRy.

Hartrum advises Smith

Alternatively the prefiz notation R(z,y) can be used.

advises(Hartrum,Smith)

Using relations, the following questions can be asked by asserting the corresponding predicate.

Is Jones an advisor?

3s: STUDENTS e (Jones, s) € advises

Is Green advised by anyone?

3f: FACULTY e (f,Green) € advises

Is Green’s advisor Jones?
(Jones, Green) € advises

Domain and Range. Since a relation is a partial mapping, we want to be able to define the subsets of
each set that do participate.

Giventhat R: X o Y
then the domain (written “dom R”) is the subset of X whose members participate in R, and the range
(written “ran R”) is the subset of Y whose members participate in R.

domR={z:X|[(3y:Y e (z,y) € R)}
ranR={y:Y | (3z: X ¢ (z,y) € R)}

Or, using set comprehension,

domR={z:X;y:Y|(z,9) € Rez}
ranR={z:X;y:Y|(z,y) € Rey}

Then in the previous example,

dom advises = {Jones, Hartrum}
ran advises = {Green, Smith, Adams}

Now we can ask if Jones is an advisor by asserting
Jones € domadvises

We can ask if Green is advised by anyone by asserting
Green € ranadvises

We can ask if all students have been assigned an advisor by

55




Vs: STUDENTS e s € ran advises
or
ran advises = STUDENTS

Relational Inverse If relation R is the set of pairs (z,y), then we define the relational inverse as the set
of pairs (y,z). Using set comprehension we formally define the relational inverse.
Rl={z:X;y:Y|(z,y) € Re (y,2)}

For example
advises™' = {(Green, Jones), (Smith,Hartrum), (Adams,Hartrum)}
and we can assert that Jones is an advisor by
Jones € ranadvises™!

Restriction Suppose we are interested in those students advised by Hartrum or Hobart. We can write a
predicate using demain restriction.

{Hartrum, Hobart} < advises
This creates a subset of advises in which only Hartrum and Hobart are in the domain. In our example this
would be {(Hartrum,Smith),(Hartrum,Adams)}. Similarly we can define range restriction R > T, as well as
domain and range subtraction using < and b.

More formally,

S:PX

T:PX

R: XY
S<R={z:X;y:Y|z€eSA(z,y) € Re(z,y)}
orSd4R={z:X;y:Y |z €8S A(z,y) €R}
RoT={z:X;y:Y|yeTA(z,y) € R}
S<eR={z:X;y:Y |z ¢ SA(z,9) € R}
RpT={z:X;y:Y|y¢TA(z,9) € R}

Further examples are:

advises 1> {Green,Smith} = {(Jones,Green),(Hartrum,Smith)}
{Hartrum, Hobart} <advises = {(Jones,Green)}
advises p{Green,Smith} = {(Hartrum,Adams)}

Composition Let COURSES be the set of courses offered.

COURSES = {CSCE594, MATH531, EENG321,...}
enrolled : STUDENTS <« COURSES

For example, enrolled = {(Green, CSCE594), (Green, CSCE689), (Smith, CSCE594),...}
We are interested in has_students_in, the relation relating a faculty member to courses in which his or her
advised students are enrolled. We can express this using composition, designated with “g”.

has_students_in = advises 3 enrolled

R: XY
S5:YeZ
RsS={z:X;y:Y;2:Z|(z,y) € RA(y,2z) € S o (z,2)}

56




Relational Image Suppose we want the set of students advised by Hartrum or Hobart.
ran({Hartrum,Hobart} < advises)
As a shorthand we write advises({ Hartrum, Hobart})

We define the relational image as follows.
R(S)={z:X;y:Y|zeSA(z,y) eRoy}

A.9 Functions

As discussed earlier, a relation defines an m:n association between two sets, where membership in the relation
is optional. Using functions allows more stringent constraints on such an association. Thus a function is a
relation (i.e. an ordered pair) that is m:1. More specific constraints can be applied by using total and partial
functions, as well as total and partial injections and surjections, and bijections. The types of functions are
summarized in Table 9.

A.9.1 Total and Partial Functions

A partial function (X -» Y') is a relation defined on sets X and Y where not every element of X or Y needs
to participate, and for each element of X that does participate there is exactly one member of Y paired with
it. Note that a member of Y that participates may be related to more than one member of X.

X+Y={R: XoY|((Vz:X; y,2:Y)e(z,y) € RA(z,2) € R= y = 2)}

If ID is the set of all possible ID numbers, then

id.num : ID -+ PERNAMES
1. Each ID has a single name associated with it (m:1).

2. A name may have two or more IDs associated with it (m:1).
3. Some IDs may not be assigned to any name (partial).
4. Some names may not have an ID assigned (function).

A total function (X — Y') is a function defined on sets X and Y where every element of X must participate.
Note that a member of Y that participates may be related to more than one member of X.

X—-Y={f:X+»Y|domf=X}

If STUDENT is the set of all students,
and GRAD_CLASS is the set of all graduating classes, then
is.in: STUDENT — GRAD_CLASS (student is member of a graduating class).
1. Each student is in a single graduating class. (m:1).
2. A graduating class has many students associated with it (m:1).
3. Every student is in some graduating class (total).
4. Some graduating classes may have no students assigned (by definition of function).

A.9.2 Total and Partial Injections

An injection is a function defined on sets X and Y whose inverse is also a function. In a partial injection
(X >+ Y) not every member of X need participate, while in a total injection (X >— Y) every element
of X must participate. Note that not all members of Y need to participate, but a member of Y that does
participate can be related to only one member of X (1:1).

X>npY={f: X»Y|(Vz,z2:domfe fz;=Fz2=> 21 =22)}

57




X>Y={f:X-Y|(Vz,zo:dom f e fz; = f 13 = 31 = 22)}

student_faculty_marriage : STUDENT >+ FACULTY
1. Bach student may be married to one faculty (1:1).
2. A faculty may be married to only one student (1:1).
3. Not every student need be married to a faculty (partial).
4. Some faculty may not be married to a student (by definition of injection).

If BOX is the set of all student mailboxes,

mailbozes: STUDENT >~ BOX
1. Each student is assigned a single mailbox (1:1).

2. A mailbox has only one student assigned (1:1).
3. Every student must be assigned a mailbox (total).
4. Some mailboxes may not be assigned (by definition of injection).

A.9.3 Total and Partial Surjections

A surjection is a function defined on sets X and Y where every element of Y must participate. A member of
Y may be related to more than one member of X (m:1). For a partial surjection (X —» Y') not every element
of X need participate, while for a total surjection (X — Y) every element of X must participate.

X-+»Y={f:X+Y|ranf=Y}
X—»Y={f:X—>Y|ranf=Y}

If TOPIC be the set of all student project topics, then
team._project : STUDENT —» TOPIC
1. Each topic must be selected by a student (surjection).
2. Every student has a topic (total).
3. Several students (a team) may have the same topic (not injective).

class_advisor : FACULTY -» GRAD_CLASS
1. Each graduating class has a class advisor (surjection).

2. Not every faculty member has a class to advise (partial).
3. Several faculty may co-advise the same class (not injective).

A.9.4 Total and Partial Bijections

A bijection (X > Y) is a function defined on sets X and Y that is both an injection and a surjection. That
is, it is 1:1 and every member of both X and Y participate.

individual_project : STUDENT >» TOPIC
1. Each topic must be selected by a student (surjection).
2. Every student has a topic (total).
3. Each topic is assigned to exactly one student (injection).
4. Each student has exactly one topic (function).

Note in Table 9 that a Partial Bijection can also be defined [1] [2]. However, no special symbol is defined.
The partial bijection is a redundant function. By reversing the domain and range sets, the same relationship
can be expressed as a total injection.

A.9.5 Total and Partial Finite Functions

Potter et al also define total and partial finite functions to be used in specifications where the use of infinite
sets causes a problem [1]. Although they are included in Table 9 they are discussed no further in this report.

58




Table 9: Types of Functions

Domain Range Formal Alternate

Multiplicity | Membership | Membership | Specification Symbol | Symbol
m:n optional optional Relation -
n:l optional optional Partial Function —+
n:l required optional Total Function —
n:l optional required Partial Surjection —
n:l required required Total Surjection —»
1:1 optional optional Partial Injection >+ C
1:1 required optional Total Injection >— C
1:1 required required Bijection > e
1:1 optional required Partial Bijection None

Finite Partial Function -+

Finite Partial Injection > C

Applying Fanctions Given:
z:X
y:Y
f: X=Y

We “apply” the function f by writing “fz” similar to the way we would write “f(z)” in mathematics.
Note, however, that parentheses can be used anywhere to clarify syntax, the use of “f(z)” to represent

applying function f to z is acceptable.

If we assume that each student has a single advisor we can define the following.

advisor : STUDENTS — FACULTY

Now “is Green’s advisor Jones ?” can be asserted as follows.

advisor Green = Jones

Similarly we can ask “Is Hobart an advisor 7” as follows.

3s: STUDENTS e advisor s = Hobart

Since functions are relations, which are themselves sets, all set and relation operators can be applied to

functions. However, such operations on functions do not always produce a function.

thesis_advisor = {(Green, Jones),...}(every student has a unique thesis advisor).
class_advisor = {(Green, Hobart),...}(every student has a unique class advisor).
advisors = thesis_advisor U class_advisor = {(Green, Jones), (Green, Hobart),...}

The resulting advisors is a relation, but not a function.

Function Overriding Function overriding (f @ g) is used to modify or update previously defined pairs

of a function.

f: X-Y existing function to be updated
g: X =Y update function

f®g=(dom(g) <f)Uyg

In other words, delete from f all pairs whose first elements match those of g, then union the result of

this with g.

59




advisor = {(Green,Jones),(Smith,Hartrum),(Adams,Hartrum)}
new = {(Smith, Hobart),(Brown,Hartrum)}
advisor ® new =7
domnew = {Smith, Brown}
dom new <advisor = {(Green,Jones),(Adams,Hartrum)}
(dom new <advisor) U new = {(Green,Jones),(Adams,Hartrum),(Smith, Hobart),(Brown,Hartrum)}
advisor ® new = {(Green,Jones),(Adams,Hartrum),(Smith, Hobart),(Brown,Hartrum)}

Lambda Expressions A lambda ezpression is an alternative way of writing functions. The general form
is

X Signature | Predicate  Term

where the signature establishes the types of the variables used, the predicate gives a condition which the
first element of every pair in the function must satisfy, and the term gives the form of the second element of
each pair of the function.

In general, a lambda expression maps types made up from variables of the signature into the expression
represented by the term for which the predicate is true. It allows you to express a function without explicitly
naming the function. It can be thought of as an implicit set definition.

Examples:

Aa,byc:N|a+b=cea®+b%+c?
Am:N|m>4em+5
Az:3..15|z2<9ez

{((0,1,1),2),((2,2,4),24),...}
{(5,10),(6,11),...}
{(3,3)}

These are equivalent to the following set comprehension form.
{a,b,c: N |a+b=ce ((a,b,c),a® +b* + %)}
{m:N|m>4e(mm+5)}

{z:3..15|2? < 9 e (z,z)}

n

A.10 Sequences

Sets are by definition (1) unordered; and (2) devoid of repeated elements. Often in modeling specifications
an ordered sequence is needed. For example, to determine distinguished graduates, a list of students, ordered
on GPA, is needed.

ranking = (Adams, Smith, Brown, Jones)

Here (...) is used to represent an enumerated sequence.
One way to handle this problem would be to define a function as follows.

ranking; = {(1,Adams), (2,Smith), (3,Brown), (4,Jones)}
Using a shorthand notation, we can define seq as follows.

Given set X
seqX::{f:N-Hdeomf=1..#f}

Using this we could then declare:
ranking : seq STUDENTS

Some other examples are:

PERNAMES :seqCHAR
SSAN :seq DIGITS where #SSAN =9

60




Operations Let seq; X = seq X \ () which disallows the null sequence.
Consider the four operations on seq,: head, last, tail, and front. The first two return an element while
the last two return a sequence, including the null sequence.

head,last : seq; X — X
tail, front : seq; X — seq X

for s :seq; X,
head s = sl
last s = s(#s)
tail s = {1} <s
fronts = {#s} <s
Recall that a sequence is a function. Hence s1 represents the application of the function to the element

“1” which for a sequence returns the first element. Similarly, the domain subtractions remove the first and
last elements of the sequence, respectively.

head ranking =Adams

last ranking =Jones

tail ranking = (Smith, Brown, Jones)
front ranking = (Adams, Smith, Brown)

Concatenation Concatenation, as its name implies, allows two sequences to be joined end to end. The
infix symbol “™” is used.

sTt=sU{n:1..#te((n+4#s),tn)}
losers = (Clark, Davis)
ranking " losers = (Adams, Smith, Brown, Jones, Clark, Davis)

A.11 Tuple Concepts

Many sets are defined over several variables, making each member of the set a tuple. Special cases of this
are those made up of 2-tuples, or ordered pairs, which form the basis for relations and functions. However,
higher order tuples are frequently encountered, and have been formalized by Codd under the concept of
tuple-algebra and tuple-calculus [16].

For example, consider a representation of students as follows.

Students = {ssan : SSAN; name : PERNAMES; age : N} |Person with these attributes is a student}

Thus each student is represented by a 3-tuple (ssan,name,age). We would like to be able to express
predicates such as “the age of all students is at least 21.” In other words, we need a notation to represent
the individual components of a set member. We do this through tuple notation or “dot notation.”

Vs : Students e s.age > 21
Consider the question “what is Smith’s age?”

{a: N1 |(3s: SSAN e (5,Smith,a) € Students) ¢ a}
Note that if names are unique, this will generate a singular set consisting of Smith’s age, but if names
are not unique the result will be a set of ages of all persons named Smith.

Consider the function Age written in Lambda notation as follows.

Age = Assan : SSAN; name : PERNAMES; age : Ny | (ssan,name,age) € Students e age
Age = {(ssan,name,age), age}

Then Age s returns student s’s age. That is, s.age represents applying this function to s.

61




B Conference Paper Reprint

This paper was presented at the 7th SEI CSEE Conference, San Antonio, Texas, January, 1994, and is
published in the proceedings in Software Engineering Education, Jorge L. Diaz-Herrera (ed.), Lecture Notes
in Computer Science 750, Springer-Verlag, New York, 1994.

62




Teaching Formal Extensions of Informal-Based
Object-Oriented Analysis Methodologies

Thomas C. Hartrum and Paul D. Bailor

Department of Electrical and Computer Engineering
Air Force Institute of Technology
Wright-Patterson Air Force Base, Ohio 45433-7765

Abstract. Teaching formal methods of software specification is often difficult.
This is in part due to the lack of well defined methodologies for applying formal
methods to large software system specifications. We have integrated formal
specification with a more informal object-oriented modeling methodology. This
allows the students to follow an established modeling approach and still generate
formal specifications. We find that the students learn the formalism much easier
with this approach than with our prior technique of teaching formal methods as a
separate block of instruction. However, the lack of good computer-aided tools for
some formal specification languages can prevent the students from directly seeing
all of the benefits of using formalism. This paper describes our use of Z schemas
to add formalism to the object-oriented modeling methodology of Rumbaugh,
et.al. [RBP*91], describes the introductory software engineering course in which
it is taught, and discusses our experience.

1 Introduction

Formal methods have evolved over recent years to the point of being supported by
specific languages. At one end of the spectrum there exist mathematically-based,
non-executable languages such as Z [PST91] [Inc88] [Spi89] [Hay87]. At the other end
of the spectrum there exist mathematically-based, wide-spectrum languages such as
Refine”™ [RS90] which are also executable. However, we have found the teaching of
formal methods to be difficult. Part of the problem is the abstractness of the formal-
based languages, which is a problem that can be easily overcome by simply doing a
better job of teaching applied discrete mathematics at the undergraduate level. A
more substantial problem to overcome is the lack of well defined methodologies for
applying formal methods to real problems. While progress is certainly being made in
this area, much still needs to be accomplished.

In our software engineering curriculum, we have developed an introductory ap-
proach that integrates well-established informal methods with formal methods. The
first course in our software engineering curriculum covers object-oriented system mod-
eling and is based on the book by Rumbaugh, et.al. [RBP+91]. We extend this ap-
proach by using the Z formal specification language to produce a formal-based, object-
oriented specification. Our modeling language is an extension of the object-oriented
model to include formal specification of its basic constructs, and our methodology
builds on that already evolving for object-oriented modeling. The result is a process

63




that is easy to understand and apply, while resulting in a formal specification.

Given that we admit formal-based methodologies are still incomplete, a valid ques-
tion to ask is “why do this?” To some extent this was addressed by the speakers at
the Sixth Conference on Software Engineering Education [Sle92]. One of the more
detailed presentations was that by Garlan [Gar92} which presented four course models
and the advantages/disadvantages of each. We find the in-depth Master’s level course
to be extremely effective as well, and we would like to add a few more reasons for
teaching formal methods.

1. The development of formal specifications forces students to apply the discrete
mathematics learned in lower level computer science courses. This not only
gives them more experience at being mathematically precise as other engineering
disciplines are required to be, but it also provides an environment in which proof
obligations on the specification can be conducted.

2. Formal specifications tend to be much more loosely coupled than the specifi-
cations produced by informal methods. Thus, they really do serve to specify
classes of possible behaviors as opposed to very specific behavior which leads to
very specific solutions.

3. Formal specifications more clearly show the benefits of reuse at higher levels
of abstraction. As stated above, they more clearly specify classes of possible
behaviors which means they can be more readily reused. Additionally, their
mathematical basis lends them to be more easily combined by mathematical
means in order to compose higher level behaviors. This capability is especially
important if we are ever to realize the benefits of domain analysis and domain
modeling.

4. The formality of the specification languages shows students how greatly increased
automated capabilities can be obtained over current generation CASE tools.
In general, this is true from both an analysis of properties perspective and a
generation/synthesis of lower level code perspective.

5. Having students learn and apply these techniques does not affect their ability
to use other, less formal techniques. Quite the contrary, it makes them all the
more aware of their shortcomings!

Another important consideration in teaching formal methods is the question of
executable versus non-executable specification languages. Both types have their mer-
its. In our case, we chose the non-executable language Z for the introductory course
described in this paper. Specifically, we like Z because it forces the student to think
more abstractly by removing the all too familiar programming level terms from their
use. When using executable, wide spectrum languages like that provided with the
Software Refinery environment [RS90], the students can still rely on these lower-level
concepts. However, one should not get the impression that Z is completely a “pencil
and paper” language. We do have simple tools for syntax checking, type checking,
and pretty-printing the Z specifications, and we have found these tools to be sufficient

64




for an introductory course. While more sophisticated tools for Z are under devel-
opment, the only other tool we would like to have for such an introductory course
is a general-purpose theorem prover. For our advanced course in formal methods, a
more significant capability is required, and we use the Software Refinery environment
and associated applications tools to treat more advanced topics like software synthesis
from specifications. '

The remaining sections of this paper describe our approach for integrating informal-
based object-oriented analysis methodologies with formal-based specification. Specif-
ically, Section 2 defines the informal model that is the basis for our approach, and
Section 3 defines our formal extensions. Section 4 describes our work on extend-
ing the approach to also cover object-oriented design and implementation. Section 5
presents the course structure. Lastly, we conclude this paper with a discussion of the
results of using this approach in four course offerings over the last two years.

2 The Informal OOA Model

The informal object oriented analysis model used for the basis of our approach is that
of Rumbaugh [RBP+91]. This specific model was chosen largely because the text
was already being used in our object oriented modeling course; however, the formal
extensions presented here could as easily be used with the approach of Coad and
Yourdan [CY91] or that of Shlaer and Mellor [SM88]. (Extensions to Booch’s work
have not been explicitly considered [Boo91]). This section briefly reviews the basic
Rumbaugh model; for more detail, especially diagram syntax, the interested reader is
referred to [RBP*91].

Rumbaugh’s model consists of three parts: the object model, which captures the
structural properties of objects and their relationships to each other; the dynamic
model, which captures the control aspects of the object which change over time; and
the functional model, which captures the transformation of data values within a system
of objects. In each part, the model consists of a graphical representation, augmented
by a date dictionary to provide a more detailed natural language description of the
system. Our approach uses Z schemas to add formality to both.

2.1 The OOA Object Model

The object model captures the static structural properties of objects, and their re-
lationships to each other. The object model is represented graphically by the object
diagram, essentially a traditional Entity-Relationship (E-R) diagram [KS86].

Objects Each object class is defined by a set of attributes, the values of which define
the state of the object. Each definition is a template that represents any actual
instances of that class. Objects are represented on the object (E-R) diagram by
a rectangle containing the object class’s name.

65




Associations Relationships are modeled as associations between objects. An asso-
ciation, similar to an object class, represents a group of possible relationships
between object instances. Most associations are binary and appear on the object
diagram as a line between the two object rectangles. Associations are named,
with the name written next to the line, and can have attributes themselves.

Multiplicity defines how many instances of a class are associated with a single
instance of the other class, and can be 1:1, 1:n, or m:n. Membership of an object
instance in an association may be “required,” indicating that all instances of that
object class must participate in an instance of the association, or “optional,”
indicating that the object instances may or may not participate. Such factors
are represented on the object diagram by a system of special symbols at each
end of the line.

There are two special types of association. Aggregation (“part-of”) allows ex-
plicit modeling of one object that is composed of other objects. A diamond is
added to the end of the line connected to the parent. Inheritance (“is-a”) allows
subclasses to be defined which inherit all of the properties of their superclass.
This is represented on Rumbaugh’s object diagrams by adding a triangle to the
association line, with the apex pointing to the superclass.

2.2 The OOA Dynamic Model

The dynamic model captures those aspects of an object and its associations that
change over time. It is graphically represented by a traditional state transition dia-
gram.

States Rumbaugh’s dynamic model represents a partitioning of an object into states,
where each state represents unique behavior with respect to the other states.
States are named, and represented on a state transition diagram by ovals. States
can be hierarchically decomposed into substates to help overcome the problem
of state explosion.

Events Directed arcs between the state ovals represent allowable transitions between
states. Events cause the transition between states, and are written as labels on
the corresponding transition arcs. An event can carry parameters, and can be
constrained by Boolean guard conditions.

Since an object can only be in one state at a time, transitions out of a state must
be mutually exclusive. The same event can appear on more than one transition
arc, making the state entered dependent on both the event and on the state in
which the event occurred.

Activities and Actions A state can be viewed as an object’s response to an event.
Behavior associated with a state is defined as an activity. An action is associated
with a transition. Although Mealy and Moore machines are generally considered
alternate modeling approaches [Dav90], both activities and actions are allowed
in the same Rumbaugh dynamic model, providing a rich set of modeling possi-
bilities.

66




owns
PERSON VEHICLE

IAUTOMOBILE AIRPLANE
1+ feeds 1+
FUEL TANK ENGINE

Figure 1: Informal Model Example.

2.3 The OOA Functional Model

The functional model consists of traditional data flow diagrams (DFDs) used for the
classical purpose of diagramming the flow of data between processes. The functional
model for an object complements the dynamic model by capturing the functional spec-
ification of the object’s behavior in the sense of what calculations are to be performed,
along with the sources and destinations of the input and output data of each calcu-
lation. Process descriptions are developed for the lowest level, or leaf processes only.
Data exchanges with other objects are handled in two ways. To simply read or write
another object’s attribute values, that object is represented by a data store. To send
or receive data as a parameter of an event, the sending or receiving object is shown as
an actor (terminator). If data is to be stored or retrieved from an association, then
the association is shown as a data store.

2.4 Example

Consider a system of vehicles and owners. A person can own zero or many vehicles,
but each vehicle can only be owned by zero or one person. There are two subclasses of
vehicle, automobiles and airplanes. An automobile has one engine and one fuel tank.
An airplane has many fuel tanks and many engines, and an association between them
indicating which tank feeds fuel to which engine. (Although the automobile’s fuel tank
also feeds its engine, the one to one mapping makes an association unnecessary). The
graphical representation of the object model is shown in Figure 1.

Consider the state transition diagram for the fuel tank, shown in Figure 2. This
is based on a discrete-event simulation model that includes filling the tank and using
fuel from the tank. Along with the graphical representation, consider the following

67




Stop Fill[fuel-level=capacity]

FILLING

Tank Full/Overflow
do:Fill Tank

Start Fill(flow-rate)

Stop Fill Start Fill(flow-rate)
[fuel-level < capacity]

Start Fill(flow-rate)/
Overflow

Start Use(flow-rate)

USING
do:Use Fuel

Figure 2: Fuel Tank State Transition Diagram.

Tank Empty/
ChangeFlowRate(0)

Start Use(flow-rate)

three state descriptions.

Full State In this state the tank is filled to capacity with fuel. It represents a stable -

condition, with no input or output flow of fuel. There are no actions or activities in
this state.

Filling State In this state the tank is being filled. There is no output flow of fuel.
Upon entering this state the fuel tank determines when it will be full, and schedules a
Tank Full event for that time. When leaving this state the fuel tank updates its fuel
level. There are no other actions or activities while in this state.

Empty State In this state the tank is empty, and no fuel is flowing in or out. There
are no actions or activities in this state.

Finally, consider the data flow diagrams for the fuel tank’s Fill Tank activity in
Figure 3. The corresponding leaf-level process descriptions are as follows.

Determine Interval Determines the (simulation) time increment between the cur-
rent simulation time and the time that the attribute values were valid.

Calculate Filled Level Calculates the new level to which the tank has been filled.

Predict Qverflow Time Calculates the simulation time at which the tank will over-
flow. This is needed to schedule the overflow event.

68




FUEL FUEL TANK
SOURCE 4

fuel-level

overflow-event-time

fucl-level

fuel-level, capacity,
~-sim-time

Figure 3: Fuel Tank DFD for Fill Tank.
3 Formal Extensions

Our approach is to use formal specifications to define the informal elements of the
model. To do this we have chosen the language Z [PST91] [Inc88] [Spi89] [Hay87].
This was chosen since several references were available, it is a well-defined language
that has been used in several real developments, it is in a form similar to the discrete
mathematics that the students are familiar with, and unlike Refine, it does not include
procedural statements, forcing the students to think in terms of the predicate calculus
representation.

In Z both objects and operations are represented as schemas. As shown in Figure 4,
a schema consists of a schema name and two parts separated by a short horizontal
line. Set-theoretic variables are declared in the signature part which represents the
union of the individual declarations. General sets are defined using all upper case
letters and are not defined in any further detail. The predicate part is used to make
statements about relationships between the variables, and while not explicitly shown,
the predicate part represents the conjunction of all the statements. Figure 4 is a static
schema, representing an entity’s state space in the signature, along with invariant
statements about the variables in the predicate.

A dynamic schema represents an operation that changes some or all of the entity’s
state variables. In Z the state variables are not traditional “programming” variables
which represent storage locations that can have new values assigned to them. Rather
they are logical variables. Thus change is represented by including both a “before”
(unprimed) and an “after” (primed) version of the variables. To define the operation,

69




. Person
name : seqCHAR
ssan :seqCHAR

sex : SEXTYPE

age : My

#tssan =9

Figure 4: Static Schema for Person.

the predicate includes pre-conditions (no primes) and post-conditions (with primed
variables) of the operation. Figure 5a shows an example of this. Here the Person static
schema is being used to define a dynamic schema named Birthday which changes the
age variable but maintains the invariant relationship on the length of the ssan.

Rather than explicitly including both versions in the signature part of the schema,
the concept of a Delta schema is typically used. As shown in Figure 5b, the notation
“APerson” in the signature part of the Birthday schema is used to implicitly repre-
sent both the “before” (unprimed) and “after” (primed) version of the variables and
predicates of the Person schema. Additionally, the signature of dynamic schemas can
include input variables (decorated with a “?”) and output variables (decorated with
a “!”)-

Schemas can themselves be used as types for declaring variables. We use this
fact heavily in our approach. Schemas can be combined through the use of schema
inclusion. One schema is “included” in another by simply stating the first schema’s
name in the signature of the second. This has the effect of unioning both schema’s
signatures and conjuncting their predicates. In fact, the APerson schema (which itself
“includes” Person and Person') is “included in” the Birthday schema in Figure 5.

In our approach, we utilize static and dynamic Z schemas to formalize the specifi-
cation of all three parts of Rumbaugh’s model, the object model, the dynamic model,
and the functional model. We describe how this is done in the following sections.

3.1 Extended Objects

The object model is formalized by defining a Z static schema for each object class. The
signature portion of the schema defines each attribute by its name and a set-theoretic
type over which it is defined. The predicate portion of the schema contains Boolean
predicates that represent invariants for the object; that is, assertions that must be
true at all times. Predicates can also be used to specify derived attributes, that is,
attributes that can be derived from other attributes of the object. The Person schema
in Figure 4 specifies the person object of Figure 1. Consider the model of the Vehicle
class in Figure 6.

70




. Birthday

name : seqCHAR
ssan :seqCHAR
sex : SEXTYPFE
age : Ny

name' :seqCHAR
ssan' : seqCHAR
sex' : SEXTYPE
age' : Nq

#ssan =9
#ssan' =9
age' = age+1

a. Expanded Dynamic Schema.

. Birthday

APerson
age’ = age+1

b. Abbreviated Dynamic Schema.

Figure 5: Dynamic Schema for a Person’s Birthday.

Vehicle

model_type : MODELS
model_year : YEAR
weight : N}

maz_speed : N7

Figure 6: Static Schema for Vehicle Class.

71




Note that this schema has no predicate. If logically combined with another schema,
the value of this predicate is taken as “true.” Similarly the schemas for the fuel tank
and engine objects of Figure 1 are shown in Figures 7 and 8, respectively.

— FuelTank
input_flow.rate : R
output_flow_rate : R
Fuel level : R
capacity : R

Fuel_level < capacity

Figure 7: Static Schema for Fuel Tank Object.

— Engine
model_num : MODEL TYPE
engine_weight : R
engine_fuel_flow_rate: R

engine_weight > 0
engine_fuel_flow_rate > 0

Figure 8: Static Schema for Engine Object.

3.2 Extended Associations

Each association is represented by a Z static schema. The set theoretic types used
in the schema are the static schemas defining the object types that are related. The
signature includes a form of mathematical relation (relation, function, injection, etc.)
that, in most cases, captures both the multiplicity and the membership (required or
optional participation) of the association.

Consider the “owns” association in Figure 1. This is 1:n and can be represented as
shown in Figure 9. Here the symbol + indicates a partial function, which captures the
membership and multiplicity requirements that every owned vehicle has one owner,
but not all vehicles have to be owned. The Z syntax includes functions to cover all
other cases of multiplicity and membership. These are summarized in Table 1. The
association “feeds” in Figure 1 is a special circumstance, and is explained later.

Associations can have attributes themselves. We treat all such cases as associative
objects and define a separate schema for the associative object. Suppose in the example

72




Owns

l_owns : Vehicle + Person

Figure 9: Static Schema for “owns” Association.

Table 1: Multiplicity Representation
Domain Range Formal

Multiplicity | Membership | Membership | Specification Symbol
m:n either either Relation w/ predicates “
n:l optional optional Partial Function -+
n:l required optional Total Function —
n:1 optional required Partial Surjection —
n:l required required Total Surjection —»
1:1 optional optional Partial Injection >+
1:1 required optional Total Injection >
1:1 required required Bijection >
1:1 optional required Partial Bijection None

of each vehicle being owned by a single person that such an association is character-
ized by a “registration number” and “registration date.” These are attributes of the
association, not of the person or the vehicle alone. Using Z this would be expressed

as shown in Figure 10.

Registration

reg.number : seq CHAR
reg_date : DATE

and

Registered

[—'registered: (Vehicle + Person) — Registration

Figure 10: Schemas for an Association with Attributes.

Inheritance Inheritance is a special type of association and is treated differently.
We first define the superclass schema, then include it in the subclass schema.
Consider the automobile and airplane of Figure 1. Using the Vehicle schema
already defined, we could specify the subclasses (exclusive of their components)
as shown in Figure 11. Multiple inheritance can also be specified in a similar

73




__Automobile0
Vehicle
serial_number : seqCHAR
color : COLORS

— Azrplanel
Vehicle
tail_number : seq CHAR
power : {JET,PROP, ROTOR,GLIDER}

Figure 11: Schemas for Subclasses of Vehicle.

— Automobile
Vehicle
serial_number : seqCHAR
color : COLORS
tank : FuelTank

engine : Engine

engine.engine_fuel_flow_rate = tank.output_flow_rate

Figure 12: Schema for Automobile Subclass of Vehicle.

manner.

Aggregation Since aggregation is a special type of association, we find it convenient
to adopt a slightly different approach. The aggregate association is represented
as a variable or set declared over the appropriate schema. The predicate of
the aggregate object is used to “connect” the parts. Continuing the example of .
Figure 1, the automobile would be better represented by the schema in Figure 12.

Since an aggregate object represents an object in and of itself, we find it useful
to embed associations between its component objects in the schema definition
of the aggregate. Consider the “feeds” association in Figure 1. Rather than use
a stand alone schema, our approach is to define it within the “airplane” schema,
as shown in Figure 13.

This has several advantages. First, the “feeds” association only has meaning
within the context of an airplane. Second, “feeds” can now be declared over only
the fuel tanks and engines that are part of an airplane, allowing the additional
predicates that specify that all tanks and all engines must participate in the
association. Third, this perspective clarifies the ambiguous interpretation of
Figure 1 that the associated fuel tanks and engines might be part of different
airplanes.

74




- Airplane
Vehicle
tail_number : seqCHAR

power : {JET,PROP, ROTOR,GLIDER}
tanks : PFuelTank

engines : PEngine

feeds : tanks < engines

power # GLIDER = #engines > 0
power # GLIDER = $ttanks > 0
dom feeds = tanks
ran feeds = engines
Ve: engines; t: tanks o (t,e) € feeds =
e.engine._fuel_flow_rate = t.output_flow_rate

Figure 13: Schema for Airplane Including “feeds.”

3.3 Extended States

An object’s state space is defined by: (1) the allowable values of all of its attributes, (2)
its membership (or lack of) in those associations in which it can participate, and (3) the
link attribute values of such associations. The object’s state space can be partitioned
into areas that represent unique behavior with respect to the other partitions. In the
dynamic model, each of these partitions of the state space is referred to as a state, and
is represented by a bubble on the state transition diagram. In our extended model each
state is given a name, and a corresponding Z schema is defined. However, a basic static
schema is inappropriate, because predicates there define invariants for all members of
the class that hold for all time, while different instances of an object can be in different
states. Thus for a state schema we declare an object of the specified type in the
signature portion of the schema and include any involved associations. In the predicate
portion, the partition of state variables that define this state is expressed as a predicate
over the state variables of the declared variable using tuple notation (object.attribute)
and/or membership of the input variable in the appropriate associations. These reflect
invariants of that state.

A transition represents the change from one specific state to another. A transition is
caused by an external (to the object) event, which may carry parameters. Parameters
need to be formally declared as set-theoretic types. The transition may be conditional
on some guard condition, a Boolean predicate expressed over the object’s state vari-
ables and the event’s parameter values. The transition can cause the execution of an
action, often the sending of an event to some other object. Thus a transition can be
completely characterized by an initial state, an external event, optional parameters,
an optional guard condition, a target state, and an optional action.

We find the most effective way of capturing this aspect of the specification formally

75




is through the use of an event transition table, in which we group the rows by “Current
State.” Although a dynamic schema could be defined for each row in the table, such a
presentation is not as clear due to the disjoint nature of the schemas and the amount
of information that each schema must carry.

Note that if an action consists of sending an event to another object, the event
name is shown in the Action column and must appear in the Event column of at
least one other object’s table. If the action involves more, an action name appears
in the Action column and a corresponding dynamic schema is defined as part of the
functional model.

An automatic transition occurs when an object has finished its specified task in
a state and transitions to another state without waiting for an external event. This
is shown on the state transition diagram as an unlabeled transition arrow (although
it may have a guard condition and/or an action), and appears in the state transition
table with no entry in the “Event” column. Note that this should be used to model
an internal transition between two states in which the object’s behavior differs, and
not used to break up a state’s activity into sequential steps.

As an example of using static schemas, consider the three states for the fuel tank
example. The schema defining the Empty state is in Figure 14, that for the Full state
is in Figure 15, and the Filling state is shown in Figure 16. The state transition table
for the fuel tank is shown in Table 2.

— Empty
t: FuelTank

t.fuel_level =0
tanput_flow_rate =0
t.output_flow_rate = 0

Figure 14: Static Schema for Empty State.

_Fall
t: FuelTank

t.fuel_level = t.capacity
tinput_flow_rate =0
t.output_flow_rate =0

Figure 15: Static Schema for Full State.

76




__Filling
t: FuelTank

t.fuel level > 0
t.fuel_level < t.capacity
tanput_flow_rate > 0
t.output_flow_rate = 0

Figure 16: Static Schema for Filling State.

Table 2: The Fuel Tank State Transition Table

[ Current State | Event [ (Parameters){Guard] | Next State {| Action
Empty StartFill (flow_zate: R) Filling
Fiiling StopFill [fuel_level = capacity] | Full
Filling StopFill [fuel level < capacity] | PartiallyFilled
Filling TankFull Full Overflow
Full StartFill (flow-rate: R) Full Overflow
Full StartUse (flow_rate: R) Using
Using TankEmpty Empty ChangeFlowRate
Using StopUse PartiallyFilled
PartiallyFilled | StartFill (flow_rate: R) Filling
PartiallyFilled | StartUse (flow.rate: R) Using

3.4 The Extended Functional Model

The extended functional model uses data flow diagrams (DFDs) in the manner spec-
ified in Section 2.3. We define a top level process bubble for each state activity or
transition action. These are then decomposed as appropriate. For each leaf bubble, a
Z dynamic schema is defined. It includes either the corresponding object’s Aschema,
in the case that the object’s attribute values are modified by the operation, or the
object’s Zschema, in the case that the object’s attribute values are not modified by
the operation. (Note that = schemas also define both sets of unprimed and primed
variables with the added constraint that their values must be equal.) Inputs that come
from other active objects are defined by Z decorated input variables, while outputs
that go to other active objects are defined by Z decorated output variables. Access to
attributes of other passive objects should be handled by including either the A or =
schema of the corresponding object. The dynamic schemas for the DFDs of Figure 3
are in Figure 17.

77




__Determinelnterval
ZEFuelTank
ZSimClock
interval! : SIMTIME

interval! = sim_time — tank_sim_time

__CalcFilled Level
AFuelTank
Z8imClock
input_flow_rate? : R
interval? : SIMTIME

fuel_level' = fuel_level + (interval?)(input_flow_rate?)
tank_sim_time' = sim_time

_ PredictOver flow
EFuelTank
input_flow_rate? : R

over flow_event_time! : SIMTIME

over flow_event_time! = tank_sim_time+
(capacity — fuel_level)/input_flow_rate?

Figure 17: Dynamic Schemas for Fill Tank.
4 Design Transformations

We have begun work in defining a set of transformations that can be applied to the Z
schemas from the analysis phase that will properly map the specification into a design.
Our design representation is also object-oriented, using Classic Ada”™ to define the
appropriate objects and encapsulated methods.

The first step in our approach is to define new data types as appropriate to cap-
ture the set-theoretic types specified in the schema signatures. Then each object is
transformed by mapping its static schema into a class declaration. Each signature
variable becomes an attribute (instance variable), and a sei_attribute, get_atiribute
~ pair of methods is defined for each. Invariants from the predicate are mapped to
validation checks in the appropriate set_attribute methods. Associations involving at-
tributes are handled in a similar manner, with two additional attributes that point to
the associated object instances.

Methods are defined by first re-grouping the object’s state transition table on

78




Event, then defining a method for each external event. The event parameters, if any,
become input parameters for the method. Each row of the state transition table for
this event type becomes a case in a case statement for the method. Determination of
the proper case is done by conjuncting the From State’s schema predicate with any
Guard Condition.

For each case three things must be done. (1) The Current State and Next State
static schemas are compared, and those state variables that differ are updated. This
is done by invoking the appropriate set_attribute methods in order to assure that any
constraints are met. (2) Any Actions, including sending events to other objects, must
be specified. For other than sending events, this is handled by a procedure call in the
method, to a procedure that is developed subsequently. (3) Any Activities defined in
the Next State description must be specified. This, too, is handled by a procedure call
at this point. This procedure will also be called by any other events that lead to the
same Nezxt State.

Finally, for each procedure called as a result of the actions and activities, there
should be a corresponding Z dynamic schema in the analysis model. From this Z
dynamic schema, a procedure is defined, using “pseudo-code” based on Classic Ada
syntax. Note that the procedure definition must be based on the pre- and post-
conditions contained in the dynamic schema and these should be included as code
comments (similar to the notion of annotations in Annotated Ada).

At this point, the resulting design specification can be checked for syntax and
consistency errors by the compiler, and in some cases the design specification is ex-
ecutable. All that remains for a completed Classic Ada implementation is the final
definition of the operations from the design level specification.

5 Course Structure

CSCE 594 Software Analysis and Design is a one quarter, 4 credit hour graduate level
class that meets for four lectures and one problem session each week. Prerequisites
consist of an introduction to discrete mathematics (note that this is sufficient for this
course, but not formal methods in general), and an introduction to data structures
and program design. The course examines the object-oriented paradigm and the for-
mal specification of software. Topics include object-oriented analysis (to include con-
text analysis, problem analysis, and specification), object-oriented design (to include
architectural and detailed design), and formal specification (to include model-based
specifications, set theory, and predicate calculus). Hands-on experience is emphasized
through the use of homework and class projects, through the use of formal/informal
specification and design languages, and through the use of computer-based software
development tools, where available. Specifically, the course objectives are as follows.

e To comprehend the distinction between system and software engineering.

¢ To comprehend and be able to apply discrete mathematics to the formal speci-

79




fication of software systems.

To be introduced to the terms domain analysis and software architectures and
comprehend their role in software development.

e To comprehend and be able to apply object-oriented approaches to software
analysis and design.

e To be able to determine when to choose a functional or object-oriented approach
to software design.

o To comprehend the issues associated with selecting analysis and design repre-
sentations and their impact on the remaining phases of software development.

¢ To comprehend the importance of computer-assisted tools to software product
engineering in terms of the generation and evaluation of various specification
and design artifacts.

The following topic areas are covered in this course. It should be noted that a
specific ordering is not being implied here. Some of the areas can and should be
presented in an integrated manner. ‘

1. Introduction

(a) Lecture Hours: 3
(b) Learning Objective: Knowledge

(c) Topic Components: Overview of systems modeling, Overview of domain
analysis, System versus software engineering, and Overview of the object-
oriented approach.

2. Object-Oriented System and Software Analysis

(a) Lecture Hours: 19
(b) Learning Objective: Comprehension/Application

(c) Topic Components: Mathematics for formal specification, Z formal speci-
fication language, Information/Object Model, Dynamic Model, Functional
Model, Pre/Post conditions, System Specification, Domain Analysis, Do-
main Modeling, and Verification/Validation of system/software specifica-
tions.

3. Formal Specification of Software
(a) Lecture Hours: 5 :
(b) Learning Objective: Comprehension/Application

(c) Topic Components: State-based model of computation, Z formal specifica-
tion language, Introduction to proof obligations and theories, and Method-
ology of formal specification.

80




4. Object-Oriented Design

(a) Lecture Hours: 8
(b) Learning Objective: Comprehension/Application

(c) Topic Components: System Design, Design Foundations (Design qualities,
Design assessment, Design representation, and Verification/Validation of
system/software designs), Architectural design (Object design, Association
design, and Software architectures and domain models), Detailed design
(Design operations and methods).

5. Languages for Software Analysis and Design Representation

(a) Lecture Hours: 2
(b) Learning Objective: Knowledge

(c¢) Components: Implications of language choice and Analysis of alternatives.
6. Classical Methods of Software Design

(a) Lecture Hours: 3
(b) Learning Objective: Comprehension/Application

(¢) Components: Functional decomposition, Transform analysis, and Transac-
tion analysis.

In addition, there are a set of projects involving individual and team exercises ap-
plying modeling tools and languages appropriate to each of the topic areas. Examples
of projects we have used are home heating systems, library systems, cruise control
systems, elevator systems, and models of rockets.

6 Discussion

One of the things we would like to emphasize is the need to integrate informal methods
with formal methods in an introductory course such as this. In the first two course
offerings, we taught informal object-oriented modeling for the first seven weeks of
the quarter, then introduced formal methods during the last three, loosely coupling
the two using objects as the basis for the Z schemas. Students tended to treat this
as a change in topic, and found the three week formal portion somewhat difficult to
understand as a stand-alone topic. Also, although all had taken or (mostly) waived
an undergraduate class in discrete mathematics, most lacked any practical experience
at applying set theory, function definition, and predicate calculus which added to the
difficulty of the three week block. By introducing the mathematics and Z formalism
at the beginning of the quarter, there is more time to “relearn” the mathematics over
the space of the quarter, and integrating the formalism as a way to document the
informal model in the data dictionary adds to the sense of purpose of the formalism.

81




However, some of the students still “just don’t get it.” They don’t see the usefulness
of the formal extensions. These students express the perception that “you’ve added
unnecessary complexity and difficulty to an existing methodology.” Part of this is due
to the lack of an executable formal language and a general lack of automated tools for
Z that build on the formal specification. Much of the work in performing Z data and
operation refinement as well as the final mapping to some implementation language
must be done manually. Another problem is cultural in nature. While it is improving
with each new class, many of our students have seen nothing concerning the use of
formal methods other than possibly proof of correctness techniques (which provided
an extremely negative impression).

Note that the course described in this paper is a required course for all our grad-
uate computer students (approximately 50 per year). Therefore, we have exposed a
substantial number of students fo the use of formal methods for system development.
In addition to this course, we also require all of our software engineering students (ap-
proximately 15 per year) to take an additional course entitled Formal-Based Methods
in Software Engineering. This course uses the Software Refinery environment which
contains a mathematically-based, wide-spectrum formal specification language called
Refine which is also executable. Refine integrates set theory, logic, objects, a formal
object base, transformation rules, and pattern matching [RS90]. Additionally, the
Software Refinery environment includes a parser generator and X11 interface toolkit.
Essentially, Software Refinery can be used to build program transformation systems
[LM91] in which high level formal specifications are used as the basis for synthesizing
lower level implementations in languages like C and Ada. With the basis provided
by our introductory course CSCE 594, the software engineering students are now in
a position to build object model transformation systems. In particular, it is shown
how object-based domain models can be used to develop domain-specific languages
and how these languages can be transformed in a behavior-preserving way using ob-
ject model to object model transformations. Thus, the elements of how to build a
specification to code level transformation system are not only discussed in class, but
practical experience with constructing and using such systems is obtained.

Overall, we feel this course has been very successful at simultaneously introduc-
ing students to formal methods and object-oriented modeling. While some problems
still remain in terms of computer-aided tools for supporting the Z formal specifica-
tion language, we feel the overall benefits greatly overcome this specific deficiency.
Additionally, this course coupled with our advanced course in formal-based methods,
where we do have more sophisticated tool support, produces a very enlightened set of
software engineers.

References

[Boo91] Grady Booch. Object Oriented Design with Applications. Ben-
jamin/Cummings Publishing Company Inc., Redwood City, CA, 1991.

82




[CY91]

[Dav90]

[Gar92]

[Hays87)
[Inc8s)
[KS86]
[LM91]
[PST91]

[RBP*91]

[RS90]
[Sie92]
[SM88]

[Spi8Y)

Peter Coad and Edward Yourdon. Object-Oriented Analysis, 2nd Ed. Your-
don Press, Englewood Cliffs, NJ, 1991.

Alan M. Davis. Sofitware Requirements, Analysis and Specification.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1990.

David Garlan. Formal Methods for Software Engineers: Tradeoffs in Cur-
riculum Design. In Proceedings of the Sizth SEI Conference on Software
Engineering Education, pages 131-140, San Diego, CA, Oct 1992.

Ian Hayes. Specification Case Studies. Prentice Hall International (UK)
Ltd, Hertfordshire, 1987. :

D. C. Ince. An Introduction to Discrete Mathematics and Formal System
Specification. Oxford University Press, New York, 1988.

Henry F. Korth and Abraham Silberschatz. Database System Concepts.
McGraw-Hill, New York, 1986.

Michael R. Lowry and Robert D. McCartney. Automating Software Design.
MIT and AAAI Press, Menlo Park, California, 1991.

Ben Potter, Jane Sinclair, and David Till. An Introduction io Formal
Specification and Z. Prentice Hall, New York, 1991.

James Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
Object-Oriented Modeling and Design. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1991.

Inc. Reasoning Systems. Refine User’s Guide. 3260 Hillview Avenue, Palo
Alto, CA 94304, 1990.

Carol Sledge, editor. Proceedings of the Sizth Software Engineering Edu-
cation Conference. Springer-Verlag, New York, New York, 1992.

Sally Shlaer and Stephen J. Mellor. Object-Oriented Systems Analysis.
Yourdon Press, Englewood Cliffs, NJ, 1988.

J. M. Spivey. The Z Notation, A Reference Manual. Prentice Hall Inter-
national (UK) Ltd, Hertfordshire, 1989.

83




References

[1] B. Potter, J. Sinclair, and D. Till, An Introduction to Formal Specification and Z. New York: Prentice
Hall, 1991.

[2] D. C. Ince, An Introduction to Discrete Mathematics and Formal System Specification. New York:
Oxford University Press, 1988.

[3] 3. M. Spivey, The Z Notation, A Reference Manual. Hertfordshire: Prentice Hall International (UK)
Ltd, 1989.

[4] 1. Hayes, Specification Case Studies. Hertfordshire: Prentice Hall International (UK) Ltd, 1987.
[5] 1. Sommerville, Software Engineering, 3rd ed. Wokingham, England: Addison-Wesley, 1989.
[6] 1. Reasoning Systems, Refine User’s Guide. 3260 Hillview Avenue, Palo Alto, CA 94304, 1990.

[7} J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented Modeling and
Design. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1991.

[8] S. Stepney, R. Barden, and D. Cooper, Object Orientation in Z. New York, New York: Springer-Verlag,
1992.

[9] P. Coad and E. Yourdon, Object- Oriented Analysis, 2nd Ed. Englewood Cliffs, NJ: Yourdon Press, 1991.

[10] S. Shlaer and S. J. Mellor, Object-Oriented Systems Analysis. Englewood Cliffs, NJ: Yourdon Press,
1988.

[11] E. Yourdon, Modern Structured Analysis. Englewood Cliffs, NJ: Yourdon Press, 1989.

[12] F. Hayes and D. Coleman, “Coherent models for object-oriented analysis,” in Proceedings of OOP-
SLA’91, (Phoenix, AZ), pp. 171-183, Oct 1991.

[13] K. J. Lee, M. S. Rissman, R. D’Ippolito, C. Plinta, and R. V. Scoy, “An ood paradigm for flight
simulators, 2nd ed,” Tech Report CMU/SEI-88-TR-30, Software Engineering Institute, Pittsburg, PA,
Sep 1988.

[14] K. I. Lee, R. D’Ippolito, C. Plinta, and J. Stewart, “Model-based software development (draft),” Special
Report CMU/SEI-92-SR-00, Software Engineering Institute, Pittsburg, PA, Dec 1991.

[15] M. R. Lowry and R. D. McCartney, Automating Software Design. Menlo Park, California: MIT and
AAAT Press, 1991.

[18] E. F. Codd, Relational Completeness of Data Base Sublanguages. Englewood Cliffs, NJ: Prentice Hall,
1972, :

85




“FORT DOCURIER

ITETION PAGE

f Form Approved
ONE Na. 070£4-0i88

porting burden for this ion of information is 10 pe iewing i i arching exisiing data sources,
i ng burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searc :
;:E’Agrﬁgfﬁé %aintaimng the data needed, and completing and reviewing the collection of information. Send comments re?ardmg this burden estimate or any other aspect of this
ion of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for C
E)?L??A?gh(\)/vay. Suite 1204, Arlingt%n, ?I% 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

or Information Operations and Reports, 1215 Jefferson

2. REPONT DATE
7 October 1994

"{. AGERCY USE ONLY (Leave blank)

3. REPORT TYPE ARD DATES COVERLD

Technical Report

&, TITLE ARTY SUBTITLE

A Formal Extension to Object Oriented Analysis Using Z

5. FURT RIURACERS

6. AUTHORS)

Thomas C. Hartrum
Paul Bailor, Maj, USAF

5 ORGARIZATION KARIE(SY ARD ADDRESSESY

Air Force Institute of Technology, WPAFB OH 45433-6583

6. SPONSORINE /MAONITORING AGERCY NARTE(S) AND ADDNESSIES)

AFIT/ENG
Wright-Patterson AFB OH, 45433-6583

TORING
mr

11. SUPPLERICHTARY KOTES

12z, DISTRIDUTION / EVARARIITY STATERERT

Distribution Unlimited

12k, DISTRIELN

13. ADSTRACY (Maximum 200 words)

This report describes extending an informal object oriented analysis model with formal constructs.
In particular, the object modeling technique (OMT) of Rumbaugh et. al. is integrated with the
formal specification language "Z". The result is a software analysis process that is easy to

understand and apply, while resulting in a formal specification.

$4. SULIECT TERNS

94

Software Engineering, Formal Specification, Object-Oriented Modeling 1. BRICE LODE

OF REPOCT
UNCLASSIFIED

OF THIS PAGE

17, SECURITV CLASSICICATION §18. SECURITY CLASSIFICATION i’i@ CSECUT

OF TRACT

ITY CLASSIFICATION | 20. LIRAITATION OF ABSTRACT

UNCLASSIFIED

UNCLASSIFIED UL

NSN 7520-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 739-18
298-102




My
e

sm reports. It is important

1o ine

public. Enter additional
ial rnarkings in all capitals (e.q.

hution categories
adam Die;”s"v’;bution ‘f@r

Include a brief (Maximum
£

”nmwymtha most
ion contained in the report.

Enter appropriate price

curity Classifications. Self-

it UG
AT T

=1 1).S. Security Classification in

. Security Regulations (i.e.,
‘orm contains ¢lassified
sification on the top and

.
) i

3 act. This block must
l ation to the

1. {unlimited) or SAR {(same
s block is nc‘: rwgcary if

If blank, the abstract

Standard Form 298 Back (Rev. 2-89)
*U.8.6P0:1993-0-358-779




